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Outline 
 

•  Intensity/pattern-based detection of planetary landforms 
•  Volcanoes in the Magellan SAR Global Mapping of Venus 

•  Cataloging landforms: Planetary Science meets Big Data 
•  Rise of the (Learning) Machines 

•  Craters 
•  Scale invariance 

•  Exploiting Height for Feature Detection 
•  Bue & Stepinski – laser altimetry for Mars crater detection and terrain classification 
•  Car detection 

•  Discovery 
•  What if you don’t know what you’re looking for? 
•  What if there are limited examples or target is highly variable in appearance?  
•  Treat as an anomaly or salience detection problem 

•  Staring allows use of height or temporal change as a signal for salience 

•  Triggering/Cueing & Event-based Observations 
•  Use of onboard analysis to direct future observations 
•  Pointing when and where something interesting is happening/about to happen 

•  Sensor Webs 
•  Combining multiple instruments into a sophisticated observational system 
•  Value of persistence 
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Motivation for Automated Image Analysis 
 

Magellan (1989-94) 
•  SAR Mapping of over 98% of the 

surface of Venus! 
•  Returned more data than all previous 

planetary missions combined 
•  30,000 images, hundreds of CD-ROMs 
•  An estimated 106 volcanoes 
•  An estimated 10 to 20 man-years to 

catalog manually. 
 

Continued technological improvements 
in sensors and collection strategies
(e.g., staring) will yield even larger 
datasets. 
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Detecting and Retargeting Objects of 
Interest, cueing other sensors. 

 

Downlink Prioritization and Derived 
Products 

 

Vigilant Monitoring (watching a 
location for changes) 
 
Closing Feedback Loops Onboard 
 

Analysis of Large Datasets New Science Opportunities 
Enabled by Onboard Analysis 
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Magellan SAR Imagery of Venus 

Developed learning-based 
recognizers that were 
trained from limited 
examples labeled by 
planetary scientists. 
 
Applied recognizer in 
production mode to 
generate catalog of 
volcano locations and 
attributes (size, subtype, 
etc.) 
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Recognition of Geological Objects"
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Detections based on Height (MOLA)!
(B. Bue, T. Stepinski, et al)!



Terra Cim
m

eria 

Region	
  area:	
  106	
  km2	
  

593	
  km	
  across	
  at	
  the	
  equator	
  	
  
5,303,888	
  classifiable	
  pixels	
  
6D	
  Digital	
  Topography	
  Model	
  [Bue	
  and	
  Stepinski,	
  

Computers	
  &	
  Geosciences,	
  2006]	
  

Studied	
  thoroughly	
  by	
  Irwin	
  and	
  Howard	
  (JGR,	
  vol.	
  
107,	
  No.	
  E7	
  pp	
  10-­‐1	
  –	
  10-­‐23,	
  2002)	
  

5	
  classificaZon	
  groupings,	
  highlands,	
  lowlands,	
  
craters,	
  ridges	
  &	
  channels.	
  

ClassificaZon	
  recognizes	
  highland-­‐lowland	
  border.	
  
	
  

Terra Cimmeria Classification (B. Bue, T. Stepinski, et al)!
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Detecting Stationary Cars in Wide Area Motion Imagery (WAMI) Data!
Scored Detections!

Red=true detection 
(TP) 
Cyan = miss (FN) 
Green = false alarm 
(FP) 

Simple detector based 
on intensity pattern 
yields large number of 
false alarms! 
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Scored Result – Detail1!

Red=detection (TP); Cyan = miss (FN); Green = false alarm (FP) 
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Positive Examples!

Positive Examples 
from left 1/3 of 
image. 
 
33x33 pixel 
patches 
 
Typical vehicle: 
    9-12 pixels width 
  18-27 pixels length 
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False Alarms (1:1000)!

Idea: Use DEM recovery and object height to reject many of these false alarms. 



Improved Image-Based, 
automated, 3D generation 
–  top picture, stereo based 
structure from motion 
–  bottom picture, multi-base 
line structure from motion (more discrimination 
closer to the ground) 

The multi-baseline technique 
provides better height estimation (over a 
specified range) and spatial resolution. Lamp 
posts and cars can be picked out in the bottom 
image but not in the top 

DEM from Multibaseline Stereo!

(A. Ansar, C. Padgett, et al)!

Stereo-based 

Multi-baseline 



3D using Multi-Baseline Stereo 
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Elevation map for cropped region around car. Area around car ~1.5 m 
higher than neighboring ground plane. Higher image resolution might 
address some remaining noise issues. 

Multi-baseline stereo algorithm rectifies arbitrarily many 
images to plane slices parallel to ground and picks best slice 
for each pixel 

(A. Ansar, C. Padgett, et al)!



3D mesh data at car derived using multi-baseline stereo 

(A. Ansar, C. Padgett, et al)!

Incorporation of a “height test” reduces false alarms 15x, but 
loses a significant number of cars, as well. Have to be careful!  
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Taxonomy of Algorithms for Finding Objects 

•  Many training 
examples 

•  Regularity in 
appearance 

•  Sometimes an 
accurate 3D model 
is available 

A Priori Knowledge High Low 

Discovery Queries Learned 
Recognizers 

o  No training 
examples 

o  No idea 
o  No regularity 

o  One example 
o  Conceptual notion 

Volcanoes, Craters, Cars 

Develop fairly precise model 
of how target objects look and 
variations thereon. 



18 

Taxonomy of Algorithms for Finding Objects 

A Priori Knowledge High Low 

Discovery Queries Learned 
Recognizers 

o  No training 
examples 

o  No idea 
o  No regularity 

o  One example 
o  Conceptual notion 

Detect areas that are anomalous relative to 
surrounding context. With multi-angle imaging, the 
height or temporal behavior (e.g., change detection) 
could be used as an aid for “discovery”. 

•  Many training 
examples 

•  Regularity in 
appearance 

•  Sometimes an 
accurate 3D model 
is available 
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Example: Martian Dunes – Fairly Irregular in Shape/Appearance 

Some objects, such as dunes, may be 
easier to detect with a “discovery” type 
algorithm, rather than with a recognizer 
that uses a precise model learned from 
examples. 
 
Idea: Look for places that are different 
(anomalous) relative to their surrounding 
context. 
 
Prototype discovery algorithm: 
compare vector of oriented “early vision” 
filter responses in an area to responses in 
neighboring spatial areas. 
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Evaluation of a Filter-based Discovery Algorithm 

Applied prototype to a variety of 
different datasets without telling 
it specifically what to look for. 
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 Landmark: a visually salient region within an image (e.g., crater, dust devil track) 
 Salience: context-sensitive (dynamic) judgment about how distinctive a region is 

 
Approach: compute statistical difference between pixel and surrounding context 

 Landmark: contour around high-salience region 

S(x, y) =
1
M

�

i

|px,y − i|hi

Intensity	
  histogram	
  
h 

Salience Map (win=50x50) 

MOC,	
  June	
  2000	
  

An Alternative Approach to Discovery:  
Landmark Detection via Contextually-Salient Histograms 

K. Wagstaff, B. Bornstein, L. Mandrake, N. Schorghofer, A. Smith 

(K. Wagstaff, et al)!
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Triggering/Cueing and Event-
based Observations 
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Rockster – Rock Segmentation through Edge Regrouping 
M. C. Burl, V-0646 

Incoming Image 
Sky – Ground 
Segmentation 

Salient points; 
splitting; T-junction 

and gap filling 

Edge Detection 
and Linking 

Initial Contours 

Background 
flooding Final Result 

Revised Contours 

Rock Mask 

Running onboard MER Opportunity rover 
as part of AEGIS – enables autonomous 
targeted follow-up observations with no 
ground intervention required. 



Onboard Analysis for Event-based 
Observation: Asteroid Flyby!

J.	
  Veverka	
  and	
  16	
  co	
  authors.	
  Near’s	
  flyby	
  of	
  253	
  mathilde:	
  Images	
  of	
  a	
  C	
  asteroid.	
  Science,	
  278:2109,	
  1997.	
  	
  
	
  

•  Targets have diverse 
morphologies, 
compositions 

•  Target locations are not 
known in advance 

•  Closest approach may 
pass quickly (sub-hour 
timescales) 

•  Geometry and 
illumination constraints 

•  Features of interest are 
highly localized 

6/19/14" Fuchs et al., i-SAIRAS 2014" 24"

(D. Thompson, et al)!



Status Quo: 
respond in days!

25"

Replanning and 
sequencing"

Processing 
and analysis"

Light 
time 
delay"

On-board Processing, 
Analysis and 
Replanning"

Onboard analysis: !
respond in minutes!

6/19/14" Fuchs et al., i-SAIRAS 2014"

Roseaa	
  graphic	
  courtesy	
  NASA	
  /	
  ESA	
  /	
  US.	
  
Roseaa	
  
DSN	
  image	
  courtesy	
  NASA	
  /	
  Caltech	
  /	
  JPL	
  
	
  

(D. Thompson, et al)!



Plume detection algorithm!

Hartley 2 (EPOXI)"

Enceladus (Cassini)"•  Detect bright material 
beyond the limb "

•  Enable monitoring 
campaigns, target-
relative data acquisition"

•  Detects most plumes with 
zero false positives"

Edge detection" Convex hull" Segmentation and thresholding"

6/19/14" Fuchs et al., i-SAIRAS 2014" 26"

Image	
  annotaZons	
  from	
  Thompson	
  et	
  al.,	
  PSS	
  2012.	
  	
  Original	
  Hartley	
  2	
  images	
  from	
  
EPOXI,	
  courtesy	
  NASA.	
  	
  Original	
  Enceladus	
  Image	
  from	
  Cassini	
  mission,	
  courtesy	
  NASA.	
  
	
  

(D. Thompson, et al)!
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A Step further: Sensor Webs 

Polar Orbiters 

Credits: A. Kelley (Morning); A. McCLung (A-Train); J. Zehnder CuPIDO 

Terra et al. Aqua et al 
Geostationary Satellites 

GOES-West 

• Timeliness – respond quickly to short-lived events 
• Deficiency – overcome limitations of individual sensing agents 
• Provide rich multi-modal observations, particularly of objects that evolve in 
space and time, such as clouds. 

• Object-centric datasets 

+ wide area coverage 
+ dwell over one location - persistence 
+ dense temporal sampling (15-30 min) 
- lower spatial resolution 
- lack of specialty instruments 

+ high spatial resolution  
+ specialty instruments  

Lidar, Multi-angle imager, Cloud Profiling 
Radar 

- cannot dwell over one location 
- infrequent revisits (16 day repeat) 

Combine into Sensor Webs to Overcome 
Individual Weaknesses and Exploit Strengths 

(M.C. Burl, M. Garay, et al)!
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Adaptive Sky Demonstration Overview 

Bezymianny Volcano 
55.978°N,160.587°E, 

Kamchatka 
Seismic Signal 

Trigger 

Check for 
Next EOS 
Overpass 

GOES 

Check for footprint 
collisions between EOS 

instruments and 
tracked ash clouds 

Earthquake: 
2007/10/14  
14:37:05 UTC 

A-Train Overpass:  
15:35 - 15:40 UTC 

(Nighttime) 

18:00 
UTC 

21:00 
UTC 

00:00 
UTC 

00:30 
UTC 

01:00 
UTC 

Initiate Adaptive Sky 
Feature Tracking using 

GOES BTD* Data 

*BTD = Brightness Temperature Difference 

Plume Evident in MODIS 
Band31-Band32 Signal 

2007/10/15 

Acquire 
additional 

observations of 
ash clouds using 
the specialized, 
high-resolution 
instruments on 
the EOS polar 

orbiters 

(M.C. Burl, M. Garay, et al)!
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Follow-up Observations of Ash Cloud 3 

• MISR Stereo Heights indicate a Cloud at ~6 
km, with lower clouds at 1-2 km. 

• MISR Aerosol Retrievals indicate non-
spherical particles in this region, consistent 

with ash 

Terra Overpass 
2007-10-16T00:05 

UTC 

• CALIOP lidar indicates an extremely thin aerosol layer at 
an altitude of ~6 km in the region.  

• The CloudSat radar does not have any returns in this 
area, indicating extremely small particles. 

A-Train Overpass 
2007-10-16T01:50 

UTC 

CALIOP returns 
at ~6 km 

MISR 
Height 
Profile 

Adaptive Sky feature tracking allowed observations made in mid-
ocean to be associated unambiguously with an ash cloud from the 
Bezymianny eruption, even with a time difference of ~20 hrs and a 
spatial separation of ~400 km. 
 
First observations of a volcanic ash cloud from the CALIOP lidar on 
CALIPSO.  Without tracking through the GOES BTD sequence, the 
returns would have been attributed to cirrus clouds instead. 
 
MISR stereo-derived heights for the ash cloud can be compared 
directly to the CALIOP lidar heights; MISR aerosol product lends 
confidence to the assertion this is indeed an ash cloud. 

Conclusion 

(M.C. Burl, M. Garay, et al)!
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Reconstructed 
3-D* Cloud 

Volume 

Satellite + CuPIDO Observations 

*3-D = three-dimensional 

Operational Concept Vision: Satellite + CuPIDO 

MISR 
Instrument 
on NASA 
EOS-Terra 

Continuously 
Sampling 

Stationary 
Camera 

“Top” view 
from MISR 

“Side” view 
from camera 

Overview: The Cumulus 
Photogrammetric, In-Situ 
and Doppler Observations 
(CuPIDO) field program was 
carried out in summer 2006 
near Tucson, Arizona. 

(M.C. Burl, M. Garay, et al)!



Southern California Wild Fires/Smoke Plumes 

The Value of Long-term Persistence 
Stabilized GOES-West Imagery 

  

(Y. Wang, M.C. Burl, M. Garay)!
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Summary 
 

Gazing will produce a flood of data! 
•  Need automated methods for analysis and cataloging feature locations. 
•  From stabilization/registration to 3D recovery to recognition/discovery 
 

Height Recovery adds new information that can simplify detection/recognition 
•  Example using MOLA data for crater detection 
•  Using multi-angle height recovery to improve car detection is promising but difficult (at the limit) 

 
Discovery 

•  Best approach under certain conditions – unknown or highly variable appearance 
•  Height and temporal change detection from staring add valuable dimensions for discovery 
 

Triggering/Event-based Observations 
•  Pointing when and where something interesting is happening/about to happen 

Sensor Webs 
•  Combine observations from multiple sensors to overcome weaknesses of each. 
•  Collective capability is greater than sum of parts. 
•  Persistence extremely valuable for some types of observations. 
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