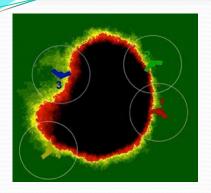
3D Reconstruction using Small UAVs

Kevin Franke, Ph.D., P.E. Assistant Professor, Civil and Environmental Engineering, Brigham Young University June 18, 2014


What does "drone" bring to mind?

Center for Unmanned Aircraft Systems (C-UAS)

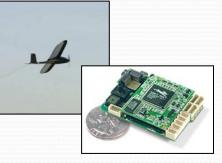
- http://c-uas.byu.edu/
- Sponsored by National Science Foundation under I/UCRC program and industry members
- Two universities currently involved:
 - Brigham Young University
 - Tim McLain, Randy Beard, Mike Goodrich, Eric Mercer, Karl Warnick, John Hedengren, Kevin Franke
 - University of Colorado
 - Eric Frew, Brian Argrow
- Virginia Tech and University of Sydney will be joining us very shortly

Center for Unmanned Aircraft Systems (C-UAS)

Cooperative Control

Path Planning Trajectory Generation

- Cooperative timing problems
- Cooperative persistent imaging
- Cooperative fire monitoring
- Consensus seeking
- 3D Waypoint path planning
- Wind compensation
- Collision avoidance
 - Optic flow sensor
 - Laser ranger
 - EO cameras



- Geo-location
- Vision-aided tracking & engagement
- Autopilot design for small UAVs
- Attitude estimation
- Adaptive control
- Tailsitter guidance & control

Image Directed Control

Autonomous Vehicles

Guiding Objective

Develop enhanced autonomous capabilities for small unmanned aircraft

- Develop and utilize:
- Novel custom sensors
- COTS sensors
- > Autonomy algorithms appropriate for computational resources
- Useful applications that improve our engineering capabilities

Goal: Approximate large UAS capabilities with low-cost, small UAS

C-UAS Research Thrust: Infrastructure Monitoring

- Investigate new ways to use sUAVs and various sensors to achieve specific objectives related to the monitoring and inspection of our infrastructure
 - Automated data collection, monitoring, inspection
 - Anomaly recognition and detection
 - Improved safety
 - Lower costs, improved data
 - Better modeling techniques
- Initiated in early 2013

Our Current sUAV Platforms:

Rightwing 81" ZXL (a.k.a. "Big Bird")

- 81" wingspan (very stable!)

- Can fly in 45+ mph winds
- Carries GoPro Hero 3
- Flies at 35-65 mph
- Flight time is 10-20 minutes

DJI Phantom 2 (a.k.a. "Gus")

Draganfly X-4 Quadcopter

(After Crash...)

- 4 rotor system
- Very mobile, but squirrely in wind
- Carries GoPro Hero 3 or Panasonic still
- Flies at 0-35 mph
- Flight time is 10-20 minutes
- 4 rotor system
- Very stable flight, but no contingency
- Very transportable
- Carries GoPro Hero 3, Hero 3+
- Flies at 0-35 mph
- Flight time is 10-20 minutes

Our Current sUAV Platforms:

Skyjib 6 (a.k.a. "Captain America") (custom built)

DJI S1000 (still needs a name!!)

- 6 rotor system
- 360-degree gimbled camera
- GPS waypoint-programmable
- Moderately difficult to transport
- Stable flight with some contingency
- Can carry full-size DSLR camera
- Flies at 0-35 mph
- Flight time is 10-20 minutes
- 8 rotor system
- 360-degree gimbled camera platform
- GPS waypoint-programmable
- Quite difficult to transport
- Stable flight with some contingency
- Can carry multiple sensors (e.g., GoPro & LiDAR)
- Flies at 0-35 mph
- Flight time is 10-20 minutes

sUAV Platforms in Action Recent project funded by a large oil/gas firm

Current Research Effort: Sub-centimeter measurement accuracy with SfM Computer Vision

Objective: Achieve sub-cm measurement accuracy of model objects using only SfM computer vision with images obtained from a sUAV.

Methods: (1) Investigate different platform types
(2) Investigate different camera types
(3) Include metadata in the SfM processing
(4) Optimize image capture

Conditions: (1) Must use COTS SfM software(2) Fly under FAA recreational provisions

Effect of Different Platforms on Model Quality

Fixed wing model

Quadrotor model

- We are experimenting with different aerial platforms to investigate the amount of improvement in a computer vision model that can be obtained.
- Noticeable difference in the model qualities....sharper resolutions and ~10% improvement in distance accuracy
- Interpretation: UAV "staring" can drastically improve the 3D reconstruction

GoPro Hero 3:

Pros: Lightweight, HD video, continuous still frame shooting, tough as nails

Cons: *only* 12MP resolution; battery life; fisheye lens distortion in large computer vision models; no metadata

GoPro Hero 3+ and new lenses:

5.4mm flat lens

50mm flat telephoto lens

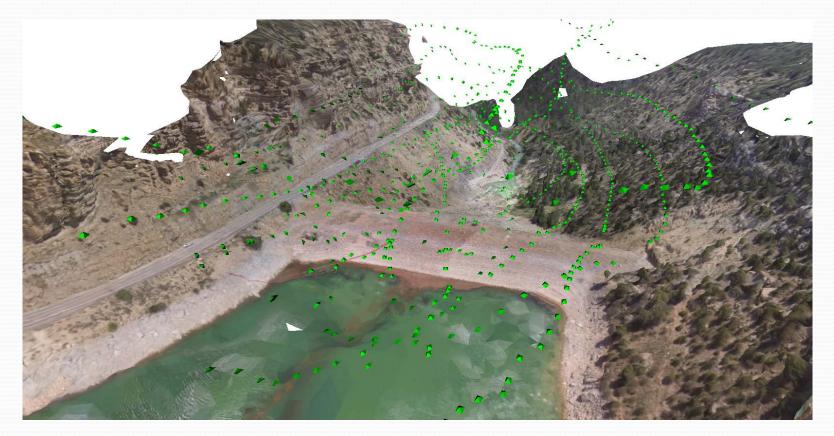
Pros: No more fisheye; potential to get very high resolutions (~0.2cm²/pixel) Cons: sensors are heavier and off-balance; stabilization gyros don't work; proper focusing; no metadata

Sony NEX-5R Digital Camera:

Pros: Decent resolution (16MP) and HD video

Cons: Heavy sensor; no automated continuous shooting mode; no metadata

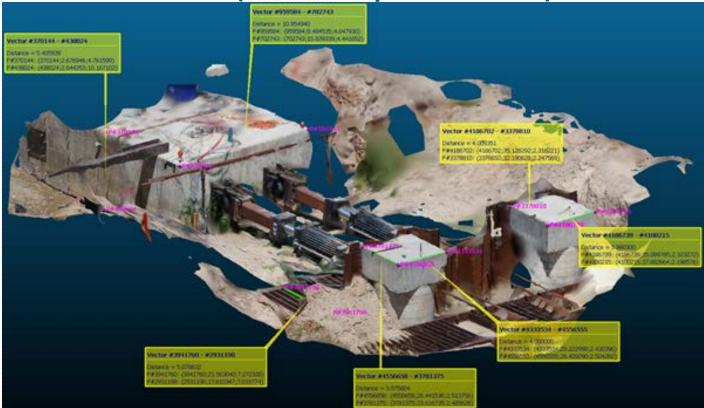
Nikon D7100:


Pros: Much higher resolutions (24MP, RAW images); potential to tag photos with metadata; potential to add telephoto lenses to improve resolution Cons: Heavy sensor; only compatible with a "heavy-lift" UAV system

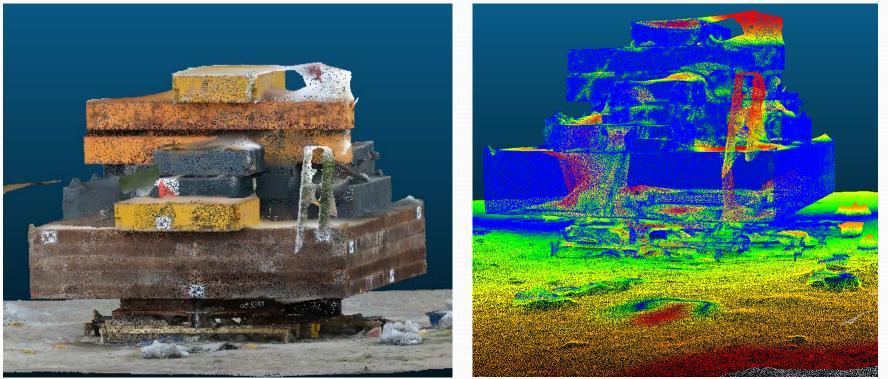
Arthur V. Watkins Dam Long, Semi-Linear Structure

- Dam is 36 feet high
- We flew 7 miles of the dam in about 12 minutes
- Model contained heavy distortion due to our GoPro fisheye lens

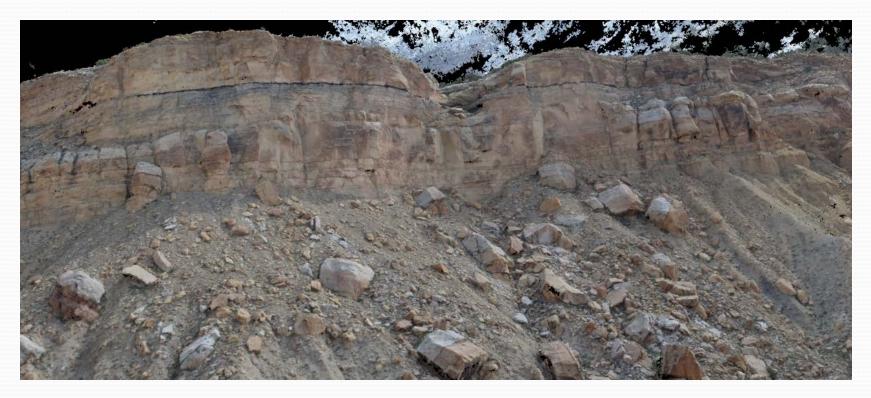
Joe's Valley Reservoir Dam Large, finite object; terrain anomalies of interest


- Dam is about 750ft wide and 187ft high
- Located in Emery County southwest of Price
- Measurement accuracy is between 30-40 cm

Little Cottonwood Canyon Rockfall Large geological object, difficult to inspect

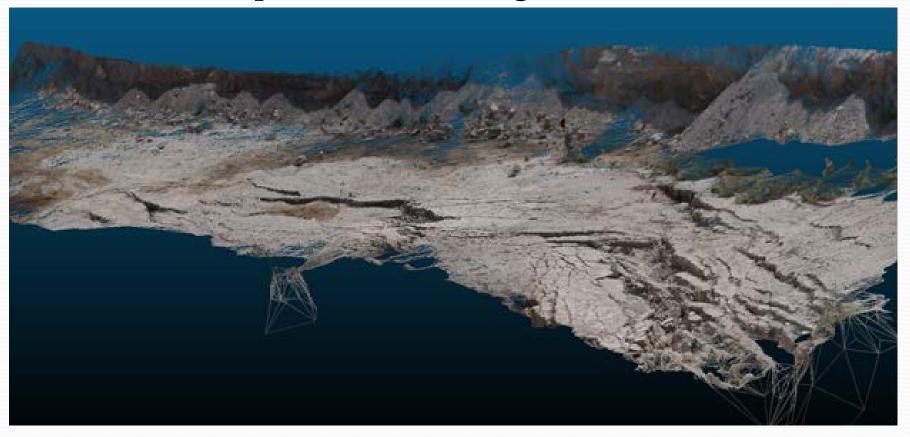

- Over 750 feet high
- We were able to collect all necessary images in less than an hour
- Poor weather and a software glitch resulted in the crash of our UAV

Salt Lake Airport Pile Load Tests Small infrastructure objects, accurate measurements (w/Dr. Kyle Rollins)

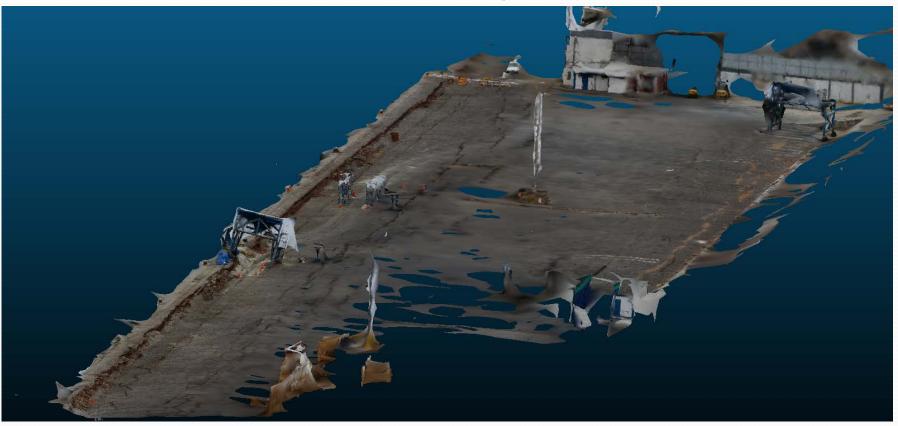

- Two large actuators pushing a large pile cap supported by six piles
- Located adjacent to the Salt Lake Airport
- Handheld Sony NEX-5R camera took over 100 images in less than 3 minutes
- Model measurement accuracy within 2.5cm (1 in)

New Zealand Pile/Liquefaction Test Small infrastructure objects, accurate measurements (w/Dr. Kyle Rollins)

- Loaded piles in blast-induced liquefied soil; soil settlements on the order of several inches were induced
- Handheld Nikon D7100 captured ~650 images in less than 10 minutes
- Pile settlement measurement errors were less than 8 mm


Recent project funded by a large oil/gas firm

- Recently flew a geologically significant rock outcrop in Utah
- Our sUAV models are still being processing, but here is a screenshot
- sUAV-based Nikon D7100 located approximately 1000 ft from cliffs
- Point cloud density of the base model is approximately 3-cm. Model measurement error is less than 0.15% (<6.5 cm)


Geotechnical Earthquake Engineering Reconnaissance

Here are some screenshots of handheld CV models of liquefaction damage from 2014 Chile

Geotechnical Earthquake Engineering Reconnaissance

Here are some screenshots of handheld CV models of liquefaction damage from 2014 Chile

Questions/Comments for workshop to consider:

- Due to its proximity, sUAVs can be used to develop high resolution models using low-cost equipment and sensors.
- Imagine what could be done with high-cost equipment!
- Some objects do not lend themselves well to space-borne remote sensing (e.g., beneath bridges, outcrop overhangs). Could sUAVs be a potential solution for modeling these types of objects?
- How can UAVs compliment space-borne remote sensing?
- sUAVs have many advantages, including low cost, easy maintenance, portability, and rapidity.
- sUAVs have three major obstacles: legality of flight, poor endurance, and weather limitations