Mapping sub-pixel surface roughness using stereo imaging

Amit Mushkin, Univ. of Washington, Geological Survey of Israel

Why look at surface roughness
 Mapping unresolved roughness from space (Earth, Mars)

<u>Acknowledgements</u> Alan Gillespie Amir Sagy Rivka Amit Ari Matmon Elsa Abbott Van Kane Gidi Baer Dan Blumberg Lee Balick

Roughness –

Scale-dependent property

 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} 10^{3} Spatial scale (m)

Topography

 The unresolved topographic expression of the surface → below the resolution of available DEMs

KISS workshop, Pasadena, June 2014

Why look at roughness -

 DEMs
 >

 Roughness
 Topography

 10⁻³
 10⁻¹
 10⁰
 10¹
 10²
 10³ Spatial scale (m)

Measurable property of terrestrial surfaces that can offer quantitative insights into:

- \rightarrow Surface processes (deposition / weathering) and change
- → Surface age
- \rightarrow Vegetation abundance and state
- → Landing hazards & trafficability (Mars)
- ightarrow Key variable in quantitative inversions of remote sensing

measurements from land surfaces \rightarrow VNIR, SWIR, TIR and Radar

- Rock fragmentation
- Scale-dependent rates
- Non-linearly decreasing rates with time

Mushkin et al., in review

Roughness as a calibrates age proxy

E. Trabelci, 2013 (MSc)

Sub-pixel (unresolved) roughness with ASTER stereo images

DEMs ----->
Roughness Topography
10⁻³ 10⁻² 10⁻¹ 10⁰ 10¹ 10² 10³ Spatial scale (m)

ASTER stereo imaging configuration (15 m/pixel) \rightarrow 30 m/pixel DEMs

3B/3N provides a measure for the amount of unresolved sub-pixel shadowing on the surface The difference between radiances at two viewangles (or illumination angles) can be used as a proxy for surface roughness

Fundamental assumptions: Lambertian reflection from the surface

Mushkin & Gillespie, 2005; 2010

Skybox – Usak, Turkey

Death Valley Trail Canyon fan:

KILOMETERS

N/

Unresolved roughness variations on the fan surfaces, and in the playa deposits are clearly identified with the 3B/3N ratio

Sensitivity to solar elevation

Mushkin & Gillespie, 2005; 2010

02

Salt flats

Slope effects on 3B/3N ratios

	<i>DEMs</i> >						
	Roi	ıghnes	5	7	Тород	raphy	
10)-3 10	⁻² 10 ⁻¹	¹ 10 ⁰	10 ¹	10 ²	10 ³ Sp	atial scale (m)

 \rightarrow "Handshake" between DEM and sub-pixel roughness estimates

→ Advantage for multi-angle data – improved characterization of unresolved roughness elements

Compensating for roughness effects in the thermal infrared

Mushkin et al., 2007

Owens Valley desert vegetation mapping

- Fire scars provide sharp, well defined transitions between different vegetation % coverage
- Common geologic substrate
- Wide range of % vegetation coverage
 - dirt roads ~ 0%
 - fans ~ 15-50%
 - creeks ~ 80-90%

Seven Pines

calibrated ASTER 3B/3N vegetation cover map

ASTER 3B/3N over Pacific NW forests

Gifford Pinchot Natl' Forest, WA

Unresolved roughness on Mars with stereo/repeat satellite imaging

Mushkin & Gillespie, 2006, Arvidson et al., 2007

Mushkin et al., 2010

Surface processes - change detection

Surface changes at shorter length scales (e.g., roughness) are more likely to be amiable to change detection within limited observation time-windows.

Summary -

Roughness Topography 10⁻³ 10⁻² 10⁻¹ 10⁰ 10¹ 10² 10³ Spatial scale (m)

DEMs

□ Staring observations will be affected by sub-pixel surface roughness and associated unresolved shadows.

□ Multi-angle observations provide "access" to sub-pixel surface roughness that is below the resolution of the image-derived DEM → Topography (resolved by DEMs) and sub-pixel roughness measurements complement each other in providing a more "complete" description of land surfaces

□ The `science' to be obtained from roughness measurements-

- Surface processes on Earth and Mars (aeolian, deposition, weathering)
- Surface age
- Vegetation mapping
- Change detection
- Landing / trafficability

□ The advantages of a 'staring' system for roughness measurements-

- Low sun elevation
- Improved constraints on the characteristics of sub-pixel roughness elements