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* Physically measure 3D: Surveying and Spherometer

« Stereo and triangulation

 Integral Photography

« Sonar and RADAR SAR --- Synthetic Holograms

* Point and Shoot LIDAR such NASA 60’s and SICK-gener 90s

e Steven White scanner — Laser line and line induced contour 80s

* Projected patterns — Stockman et.al and 1988

 DeMorie Patterns — Montreal Group 1986

« Kanade’s distributed angle of arrival sensor 1988

 Hybrid Range intensity sensing — Seetharaman 91 and Medioni 95
e Multiview Imaging — Zisserman et.al - Point clouds

e Canesta - Kinect — 2003 rapid point patterns

 Bundle Adjustment — Triggs et.al. 2005; most recent rapid growth N
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HD motion imagery of ABQ, NM.
Courtesy: Transparent Sky LLC, NM
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\ / B3D: Video Based Point Cloud Creatio
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\/ Persistent Sensors vary in SWAP and
Nl CONOPS

Realtime Consumption Forensic Consumption
Image Registration Geo-registration before Exhaustive registration between retinal
communication images, after communication
Exploitation Tactical, visual process (Humans | Context, location-specific history, enterprise
in the Loop) and forensic scale forensic processes
3-D models a-priori models via DTED 3D is extracted; but, long-term learning is
feasible
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Two Imaging models

Large world
Wide FOV ja
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Epipolar line equation holds.

Vanishing points are unique for each
bundle of parallel lines.

Image of 3-D points on a plane all obey a
single quadratic relationship across time.

Non Euclidean imaging!

Challenge: Even a simple cube has six
faces; each visible partition in the image
manifests as a different transformation —
parameters TBE.
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Small world
Narrow FOV
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Z, — o, implies far-away objects
f — oo, Implies large-focal length.
Telephoto imaging

Euclidean in the small-world.

EE-s recall small signal analysis.
Piecewise linear, and bounded total
distortion on the global scale.

How to locate and deal with
discontinuities!?
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\/ Basic Constraints on G and R

«Qr from Visual Landmarks

Longlook-97
IJDSN - 2007

Triplets — 198x

Given, a and b in the image. A and B are known. Camera position is

constrained onto a unique circle.

Fusing GPS
helps narrow
the uncertainty

Imprecision in the
pixel positions
adds to radial
uncertainty.
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eSequential feature tracking tailored for WAMI
collection

‘No RANSAC, No Kalman or other filtering

*No Fundél ZF—‘ (. ) [2)3timation

(Xiz -
*Robust welghted reprOJectlon error loss
function

*\Very fast: 6.5 minutes vs 6-8 hours with
VlsuaISfI\/I —combination of GPU, C++, I\/Iatlab
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\/ BA Albuquerque WAMI Dataset
«Qr

e Number of cameras: 215
* |[mage size: 6600 x 4400

e Number of feature observations: 668,000

e Number of 3D points: 141,559
e Size of Jacobian matrix: 1,336,000 x 425,968

e Total time: Less than 6.5 minutes (4 min Matlab)
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NZ  EEE of MU-BA vs VisualSFM

uzing MU-BA vs Wisual 5Pk

T :
£ o I

S0

1n0p =

ML
||:I_:I-'1

150 F

200

MU-BA 1.8276 1.0495
VisualSFM 2.4866 1.5856

Percentage of MU-BA overperforming VisualSFM is 66.29

Percentage of VisualSFM overperforming MU-BA is 33.30

oo Percentage that both VisualSFM and MU-BA have no error £6%2-IF

12



\ 2
\ ¥4 Highlights
<o

‘MU BA pipeline uses fewer points (less computation)
compared to other BA such as VisualSFM, but yields
better results

For WAMI-BA, using extra matches does not
necessarily result in improved accuracy

Much faster than VisualSFM which takes about 5-6
hour on Albuquergque dataset

‘MU BA does not use thresholding or RANSAC to
eliminate outliers, but a robust loss function
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\/ BA on Albuquerque Dataset

About 2 minutes, C++ GPU

tia
ANS >/ extraction (SIFT) \ Closure

r Y

which get a 3d point
« Calculating statistics of tracks(to
be used by robust function)

About 4 minutes, Matlab

ADDIVING 8 1888 . SlsHanlinlin ALICH] L)
using an appearance-based (track-
length) robust loss function to minimize
both camera parameters and 3D points

—

Point cloud

About 30 seconds, C++

About 5 seconds (Matlab)
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State of the Art —
'Reconstruction Techniques
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Volumetric appearance modeling , Pollard & Mundy, CVPR09
Comprehensive 3-D change detection using volumetric appearance modelling, B. Pollard,
PhD Thesis, Brown Univ. 2009

A continuous probabilistic scene model for aerial imagery, D. Crispell, PhD Thesis, Brown

Large unorganized collection of ground based photos
Snavely (Cornell), Seitz (Univ. Washington ) & Szeliski
(Microsoft) ICCV, 2009

Univ. 2010
il GPS / IMU Reference
—p ]\ /N /
AR E metadata | Image
H e
I—) camerapsein | Gs 3 models
¥ _geo cnonima{l / )
. 3 | i | Sequence
. » i | Input Frames | r Occlusion Map ’—) Sourees - Sinks —)‘ Aligniment
L Moving Objects '—)I ‘Tracks J Merged Tracks 7 5 w0

Large structured collection of ground based photos,

i D i ki Prokaj & Medioni VPR11
Bischof (TU Graz) CVIU, 2012 Using 3D scene structure to improve tracking , Prokaj & Medioni (USC) C

Accurate image registration through 3D reconstruction, Y. Lin, PhD Thesis,, USC, 2010

Limitations of Current Methods:

- Probabilistic voting vs feature-constrained voting

- Accuracy of point set models and planar models is not adequate

- Shadow and occlusion maps need to be integrated into tracking models -
- High computational overhead cost and offline process for large urban coverage j
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Major Milestones

$' 16



\
\/3DTV - Approach 2: Integral Photography:
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recording an integral photograph
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replaying processed pseudoscopic 3-D image
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recording second stage integral photograph

replaying and viewing the orthoscopic image
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Planar Lens array

5 Integral photography

Integral photo 1960s; technologlcm
— i —— E -

the 90s.
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Image Pickup

Lenslet array :
~ Imaging lens
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3-10 object g
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Fip. | Typical Integral Imaging capturing system. With Cll images representing perspectives of 3-
[} abjects ave veconstracted digitally, Tn the propased metbod the lenslet arvay is moved in a plane
I."Jf.':l']":.f.'uf..?r':r.'.?.-rr to ihe el reatl dxrs.

Javidi LEOS2004

AFRL/SNJ

Dicriicecinn Anioiict

18 AFRI

18



Yollrme .
Object . MNanipulatcion

T AL AFR

19




Distribution A:

/’
—

~
_/

= Peak Detector

Global
Clock

Time in voltage

LI T

]
i "y
i
f

/ LA

of iy

ST
77777

Light

Comparator

Time stamp

Memory

_f_

//

Planar sheet of light
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Image Plane /

Lens of the camera

Laser beam

eCt being imaged
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\jeal—time multi-view | & Z sensor (Seetharaman
Q@ et.al. CAMP-1991)

High speed
stereo

vision
processor

Laser Stripe Projector

i g Camera 3 f3(:r,y;t)

—]l(-r!y) Z {X,y)
JZ(«T,J’) Zz (x,y)
%(.r,y) Z3(xry)

§ 3 Video + 3 Depth
streams

23

23



\
N

®
-

Distribution C

4

2ZDTV

USER 1
Any View

One Vu
3DTV

L
°

SITE 2
Any Direction

3D SENSING____|

LAYERIZATION
Digital TV
Transmission

3 View
3IDTV

SITE 3

OMNI VIEW 3D PROJECTION

High End User Site

M e
ANy ™
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N 10000 FPS CMOS Pixels
&

no| m -
1 Digital
V\?» ADC +#»| Memory ! Readout
- DPS Pixel -

I[EEE JSSC 2001. El Gamal. Stanford U.
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Parallel indexed Timed Emitters (DCV02)

Z(t)
Depth Data
Gray Scale Data
Data Strobe | |
L (x.y) Z(x.y)
Isync
|
lclock Down Counter
Comparator
CY S
0 =
CK D ff | |
\T/ Gated, Timed, PWM-ed
signal.
EACH TIMED EMITTER BLOCK.....  One per each x.
TE 1 TE 2| | TE3 TE 255| | TE 256

MEM OR VCSEL ONE for each x.
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ALL PASSIVE — NON EMISSIVE SENSING
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\/' LA Results March 2014
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