

Video Based 3D Imaging: Milestones and The Horizon

June 20, 2014

Guna Seetharaman Ph.D.
Information Intelligence and Analysis Division
Information Directorate, Rome, NY
Gunasekaran.seetharaman@us.af.mil
315-330-2414

Prof. K. Palaniappan, University of Missouri at Columbia Dr Steve Suddarth, (Ret Col USAF), Transparent Sky LLC, ABQ

Integrity ★ Service ★ Excellence

Historical Milestones

- Physically measure 3D: Surveying and Spherometer
- Stereo and triangulation
- Integral Photography
- Sonar and RADAR SAR --- Synthetic Holograms
- Point and Shoot LIDAR such NASA 60's and SICK-gener 90s
- Steven White scanner Laser line and line induced contour 80s
- Projected patterns Stockman et.al and 1988
- DeMorie Patterns Montreal Group 1986
- Kanade's distributed angle of arrival sensor 1988
- Hybrid Range intensity sensing Seetharaman 91 and Medioni 95
- Multiview Imaging Zisserman et.al Point clouds
- Canesta Kinect 2003 rapid point patterns
- Bundle Adjustment Triggs et.al. 2005; most recent rapid growth

Current State of the Art: VB3D Reconstruction

HD motion imagery of ABQ, NM. Courtesy: Transparent Sky LLC, NM

Persistent Sensors vary in SWAP and CONOPS

	Realtime Consumption	Forensic Consumption
Image Registration	Geo-registration before communication	Exhaustive registration between retinal images, after communication
Exploitation	Tactical, visual process (Humans in the Loop) and forensic	Context, location-specific history, enterprise scale forensic processes
3-D models	a-priori models via DTED	3D is extracted; but, long-term learning is feasible

Two imaging models

$$x = \frac{fX^o}{f + Z_0 + Z^o}$$

$$y = \frac{fY^O}{f + Z_0 + Z^O}$$

Epipolar line equation holds.

Vanishing points are unique for each bundle of parallel lines.

Image of 3-D points on a plane all obey a single quadratic relationship across time.

Non Euclidean imaging!

Challenge: Even a simple cube has six faces; each visible partition in the image manifests as a different transformation – parameters TBE.

True, even in the case of a single motion

– of the cube or camera.

Two imaging models

Small world Narrow FOV

$$\begin{bmatrix} x \\ y \end{bmatrix} = \left(1 + \frac{Z_0}{f}\right)^{-1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X^O \\ Y^O \\ Z^O + Z_0 \end{bmatrix},$$

 $Z_0 \to \infty$, implies far-away objects $f \to \infty$, implies large-focal length. Telephoto imaging

$$x = \frac{fX^{O}}{f + Z_{0} + Z^{O}} = \frac{fX^{O}}{(f + Z_{0})} \left(1 + \frac{Z^{O}}{Z_{0} + f}\right)^{-1},$$

$$y = \frac{fY^O}{f + Z_0 + Z^O} = \frac{fY^O}{(f + Z_0)} \left(1 + \frac{Z^O}{Z_0 + f}\right)^{-1}.$$

Euclidean in the small-world.
EE-s recall small signal analysis.
Piecewise linear, and bounded total distortion on the global scale.
How to locate and deal with discontinuities!?

Registration: Mythical Flat Earth

Basic Constraints on G and R from Visual Landmarks

Longlook-97 IJDSN - 2007

Triplets – 198x

Given, **a** and **b** in the image. A and B are known. Camera position is constrained onto a unique circle.

Fusing GPS helps narrow the uncertainty

Imprecision in the pixel positions adds to radial uncertainty.

Features of MU BA

- Sequential feature tracking tailored for WAMI collection
- No RANSAC, No Kalman or other filtering
- •No Funda $\frac{1}{2}\sum_{i=1}^{n}\rho_{i}\left(\|f_{i}\left(x_{i_{1}},...,x_{i_{k}}\right)\|^{2}\right)$ stimation •Robust weighted reprojection error loss
- Robust weighted reprojection error loss function

•Very fast: 6.5 minutes vs 6-8 hours with VisualSfM –combination of GPU, C++, Matlab

BA Albuquerque WAMI Dataset

- Number of cameras: 215
- Image size: 6600 x 4400
- Number of feature observations: 668,000
- Number of 3D points: 141,559
- Size of Jacobian matrix: 1,336,000 x 425,968
- Total time: Less than 6.5 minutes (4 min Matlab)

Distribution A:

EEE of MU-BA vs VisualSFM

Errors (m)	Mean	Std Deviation
MU-BA	1.8276	1.0495
VisualSFM	2.4866	1.5856

Percentage of MU-BA overperforming VisualSFM is 66.29

Percentage of VisualSFM overperforming MU-BA is 33.30

Highlights

- MU BA pipeline uses fewer points (less computation) compared to other BA such as VisualSFM, but yields better results
- •For WAMI-BA, using extra matches does not necessarily result in improved accuracy
- Much faster than VisualSFM which takes about 5-6 hour on Albuquerque dataset
- •MU BA does not use thresholding or RANSAC to eliminate outliers, but a robust loss function

BA on Albuquerque Dataset

About 5 seconds (Matlab)

State of the Art – 3D Reconstruction Techniques

Large unorganized collection of ground based photos Snavely (Cornell), Seitz (Univ. Washington) & Szeliski (Microsoft) ICCV, 2009

Large structured collection of ground based photos, Bischof (TU Graz) CVIU, 2012

Volumetric appearance modeling, Pollard & Mundy, CVPR09

Comprehensive 3-D change detection using volumetric appearance modelling, B. Pollard, PhD Thesis, Brown Univ. 2009

A continuous probabilistic scene model for aerial imagery, D. Crispell, PhD Thesis, Brown Univ. 2010

Using 3D scene structure to improve tracking, Prokaj & Medioni (USC) CVPR11 Accurate image registration through 3D reconstruction, Y. Lin, PhD Thesis., USC, 2010

Limitations of Current Methods:

- Probabilistic voting vs feature-constrained voting
- Accuracy of point set models and planar models is not adequate
- Shadow and occlusion maps need to be integrated into tracking models
- High computational overhead cost and offline process for large urban coverage

A. Zakhor, UCB

Major Milestones

3DTV - Approach 2: Integral Photography

Integral photo '1960s; technologic the 90s.

Image Pickup

Fig. 1 Typical Integral Imaging capturing system. With CII images representing perspectives of 3-D objects are reconstructed digitally. In the proposed method the lenslet array is moved in a plane perpendicular to the optical axis.

Javidi LEOS2004

eal-time multi-view I & Z sensor (Seetharaman et.al. CAMP-1991)

10000 FPS CMOS Pixels

IEEE JSSC 2001. El Gamal. Stanford U.

Parallel indexed Timed Emitters (DCV02)

ALL PASSIVE - NON EMISSIVE SENSING

LA Results March 2014

