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Aerosol properties

We define the dry aerosol effective radius as 0.25 um compared to
0.35 um for our Pinatubo simulations. This creates hydrated
sulfate aerosols approx 0.30-0.35 um for our geoengineering runs
and 0.47-0.52 um for our Pinatubo simulations.

It is difficult fo say the size at which the aerosols will end up
without a microphysical model that has coagulation but by injecting
daily vs. one eruption per year, coagulation would be reduced since

concentrations are lower and more globally distributed. On the

other hand, particles might grow larger than those typical of a
volcanic eruption if existing particles grow rather than having new

particles form.

The smaller size aerosols have a slightly longer lifetime so this
would reduce the rate of injection needed to maintain a specific
loading.
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Aerosol properties

By using a smaller aerosol size (about 30% less than Pinatubo),
there is about half the heating of the lower tropical stratosphere
as compared to the equivalent loading using a Pinatubo size aerosol.

We injected it at about the same altitude as Pinatubo but if the
sulfate was closer to the tropopause and larger in size it would
warm the tropopause cold point and let a lot more water vapor into
the stratosphere, and this could cause additional problems that
would have to be considered.
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Heckendorn et al. (2009) showed particles would grow, requiring much
larger injections for the same forcing.

Environ. Res. Lett. 4 (2009) 045108
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Figure 4. (a) Total aerosol burden as function of sulfur injected annually into the stratosphere (0, 1, 2, 5 and 10 Mt/a S) calculated by the
AER model. Dash—dotted line: aerosol burden, if the aerosol residence time were 1 year irrespective of injection strength. Dashed line:
aerosol burden when aerosol sedimentation is suppressed in the stratosphere. All results for injections at 20 km, except black square for 24 km
emissions. (b) Change in global annual mean net SW flux change at the surface due to geoengineering in comparison with GEOO calculated
by SOCOL for all-sky conditions. Vertical bars: standard deviation of monthly values. Triangles: SW downward flux changes due to
geoengineering as proposed by Robock ef al (2008). All lines in both panels are meant to guide the eye.
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Pierce et al. (GRL, 2010) claim emitting sulfuric acid directly will
produce larger particles, helping solve the problem of aerosol growth.
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Figure 4. Steady-state (a) stratospheric sulfur burden and (b) top-of-atmospheric solar-band (shortwave) radiative flux
change from the stratospheric acrosols as a function of sulfur injection rate. All simulations have emissions evenly distrib-
uted between 30°S-30°N and 20-25 km, except results for SO, emitted only above the equator (5°S—5°N) at 20 km (19.5—
20.5 km). Also included for comparison are the stratospheric sulfur burdens computed by Rasch et al. [2008a] (with fixed
effective radius of 0.43 i) and the solar flux changes by Robock et al. [2008], both without acrosol microphysics. Black
horizontal dotted line in Figure 4b represents the approximate cooling necessary to offset a doubling of CO, in the global-
mean cnergy budget.
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Change in downward solar radiation at Earth's surface
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EFFECTS OF LARGE EXPLOSIVE TROPICAL
VOLCANOES ON WEATHER AND CLIMATE

EFFECT/MECHANISM BEGINS DURATION

1. Enhance or reduce El Niho? 1-2 weeks 1-2 months
Tropospheric absorption of shortwave and longwave radiation, dynamics

2. Reduction of diurnal cycle Immediately 1-4 days
Blockage of shortwave and emission of longwave radiation

3. Summer cooling of NH tropics, subtropics Immediately 1-2 years
Blockage of shortwave radiation

4. Reduced tropical precipitation Immediately ~1 year
Blockage of shortwave radiation, reduced evaporation

5. Reduced Sahel precipitation 1-3 months 1-2 years

Blockage of shortwave radiation, reduced land temp., reduced evaporation
Weaker African monsoon
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EFFECTS OF LARGE EXPLOSIVE TROPICAL
VOLCANOES ON WEATHER AND CLIMATE

EFFECT/MECHANISM BEGINS DURATION
6. Ozone depletion, enhanced UV 1 day 1-2 years
Dilution, stratospheric heating, heterogeneous chemistry on aerosols
7. 6Global cooling Immediately 1-3 years

Blockage of shortwave radiation multiple eruptions: 10-100 years
8. Stratospheric warming Immediately 1-2 years
Stratospheric absorption of shortwave and longwave radiation
9. Winter warming of NH continents 3-1% years 1 or 2 winters

RUTGERS

Stratospheric absorption of shortwave and longwave radiation, dynamics
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EFFECTS OF EXPLOSIVE HIGH-LATITUDE
VOLCANOES ON WEATHER AND CLIMATE

EFFECT/MECHANISM BEGINS DURATION
High latitude eruptions:
10. Cooling of continents Immediately 1-2 years

Blockage of shortwave radiation

11. Reduction of Indian summer monsoon -1 year 1 or 2 summers
Continental cooling, reduction of land-sea temperature contrast

12. Reduction of African summer monsoon %-1 year 1 or 2 summers
Continental cooling, reduction of land-sea temperature contrast

13. Reduction of Nile River flow 3-1 year 1-2 years
Reduced monsoon precipitation
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Major volcanic eruptions
of the past 250 years

Volcano Year VEI d.v.i./EBnx IVIZ2

Lakagigar [Laki craters], Iceland 1783 4 2300 93.0
Unknown (El Chichon?) 1809 53.7
Tambora, Sumbawa, Indonesia 1815 7 3000 109.8
Cosiguina, Nicaragua 1835 5 4000 40.2
Askja, Iceland 1875 5 1000 0.0
Krakatau, Indonesia 1883 6 1000 21.9
Okataina [Tarawera], North Island, NZ 1886 5 800 1.9
Santa Maria, Guatemala 1902 6 600 3.8
Ksudach, Kamchatka, Russia 1907 5 500 0.0
Novarupta [Katmai], Alaska, US 1912 6 500 11.0
Agung, Bali, Indonesia 1963 4 800 20.9
Mt. St. Helens, Washington, US 1980 5 500 0.0
El Chichon, Chiapas, Mexico 1982 5 800 *
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Santorini, 1628 B.C.

Responsible for the legends of:

Atlantis (Minoans on Crete)

Biblical plagues
Parting of the Red Sea

RUTGERS



Etna, 44 B.C.
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"The fullest description of 'rhe sun in Thls pemod
is that provided by Plutarch (Life of Julius
Caesar 69.3-4), who speaks of the rays of the
sun being veiled, leaving the face of the sun pale
and without radiance and thus furnishing so little
heat that fruits never fully ripened, but
shriveled instead...'due to the coldness of the
atmosphere."
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During several of the summer months of the
e Year 1783, when the effect of the sun's rays to
heat the earth in these northern regions should
have been greatest, there existed a constant fog
over all Europe, and great part of North America.
This fog was of a permanent nature; it was dry,
and the rays of the sun seemed to have little
effect towards dissipating it, as they easily do a
moist fog, arising from water. They were indeed
rendered so faint in passing through it, that when
collected in the focus of a burning glass, they
would scarce kindle brown paper. Of course, their
summer effect in heating the earth was
exceedingly diminished.

Hence the earth was early frozen,

Hence the first snows remained on it unmelted,
and received continual additions.

Hence the air was more chilled, and the winds
more severely cold.

Hence perhaps the winter of 1783-4, was more
severe, than any that had happened for many
years.

The cause of this universal fog is not yet
ascertained. Whether it was adventitious fo this
earth, and merely a smoke, proceeding from the
consumption by fire of some of those great
burning balls or globes which we happen to meet
within our rapid course round the sun, and which
are sometimes seen to kindle and be destroyed in
passing our atmosphere, and whose smoke might
Figun .';:"H-"""'J':""'r.'-'.r.J_i:-"""1'"",-'-'; I‘J-‘_-.-":l"'-'- T be attracted and retained by our earth; or
;lllllJI'Ir i ::l|:I:.-|L|!i!-:=;’--“:i:=:.'r|.i-\..'-.=ii.:='ri.I|!|'-|-Iflil.'li|!.’ii.l| whether it was the vast quanTiTy of smoke, long
Washingtan, D.C. continuing to issue during the summer from Hecla
in Iceland, and that other volcano which arose out
of the sea near that island, which smoke might be

m_ITGERS Fr'ankl |n (1784) spread by various winds, over the northern part of

the world, is yet uncertain.




1783-84 Laki Eruption in Iceland
(8 June 1783 - 7 February 1784)

Second largest flood lava
eruption in historical time

Iceland's biggest o
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Fig. 1 from Thordarson and Self (2003)
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Laki eruption was both tropospheric and stratospheric.
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1783-84 Laki eruption

eruption episode | IL:I“ - v i ;—ll I\ﬂl |L ILI
earthquake swarm ~wwwwwwaas s aWwW WL WW W W Wy
explosive phase *
BERERIOER g m_*,q_,_*
1783 20 | 10 20 10 20 10 20 10 20 10 20 10
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The Laki eruption lasted for 8 months, with continuous effusive
emissions into the troposphere, as well as 10 El Chichdn-size
eruptions to a height of 10-13 km, into the lower stratosphere.
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summer

Extent and date of first appearance of Laki haze at surface.
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Cold Summers
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Laki GCM Simulations

* NASA Goddard Institute for Space Studies
(GISS) ModelE GCM

* 4°x5° horizontal resolution

» Stratospheric version with 23 vertical levels
* Gravity wave drag scheme

* Fixed climatological SSTs

* Dorothy Koch's sulfur chemistry model,
which includes gas-aerosol conversion,
transport, and cloud microphysics
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Why was the summer of 1783 so warm
over Europe?

If it was caused by the eruption, there are several
possibilities:

1. Circulation anomalies induced by radiative
forcing from volcanic gases and aerosols.

2. Somehow radiative anomalies from the sulfate
aerosols caused warming.

3. SO, that had not converted to aerosols acted as a
greenhouse gas.

Alan Robock
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for the British Isles. Data from Kington (1988).
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M. C-F. Volney, Travels through Syria and
Egypt, in the years 1783, 1784, and 1785, Vol.
I, Dublin, 258 pp. (1788) reports on the famine
in Cairo and the annual flood (inundation) of =
the Nile River.

“The inundation of 1783 was not sufficient, great part of the lands
therefore could not be sown for want of being watered, and another
part was in the same predicament for want of seed. In 1784, the
Nile again did not rise to the favorable height, and the dearth
immediately became excessive. Soon after the end of November,
the famine carried off, at Cairo, nearly as many as the plague; the
streets, which before were full of beggars, now afforded not a
single one: all had perished or deserted the city."

By January 1785, 1/6 of the population of Egypt had either died or left the
country in the previous two years.

I{_ITGERS http://www.academie-francaise.fr/images/immortels/portraits/volney.jpg Alan Robock
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FAMINE IN INDIA AND CHINA IN 1783

The Chalisa Famine devastated India as the
monsoon failed in the summer of 1783.

There was also the Great Tenmei Famine in Japan
in 1783-1787, which was locally exacerbated by
the Mount Asama eruption of 1783.
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Photo by George C. Martin
KATMAI VILLAGE, LOOKING NORTH TOWARD KATMAI VOLCANO, WHICH IS CONCEALED IN THE CLOUD BEYOND THE HILLS
AUGUST I3, 1912

The eruption of Katmai Voleano, though one of the most violent explosions recorded, did not cause the loss of a single life, owing to the
sparse scttlement of the neighborhood. The town of Katmai was deserted at the time of the eruption, most of the inhabitants being away, engaged
in the summer fishing.

Katmai village, buried by ash from the June 6, 1912 eruption
Katmai volcano in background covered by cloud

Simulations showed same reduction in African summer precipitation.
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Tambora in 1815, together with an eruption

from an unknown volcano in 1809, produced

the “"Year Without a Summer” (1816)

Alan Robock
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Tambora in 1815, together with an eruption
from an unknown volcano in 1809, produced
the “"Year Without a Summer” (1816)
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During the summer of 1816, the weather was atrocious, cold |
~and rainy spells alternating with violent thunder storms, At |

that time Byron, a 28 years old poet, was renting the villa
Diodati situated to the left of this meadow.

Mary Shelley was also spending the summer in Cologny, at
| Jacob Chappuis' home situated at the lower end of
f  Montalegre, below where you are now standing.
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Frankenstein
by Mary Shelley
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Tambora, 1815, produced the
“Year Without a Summer” (1816)

"Darkness”
by Byron

I had a dream, which was not all a dream.

The bright sun was extinguish'd, and the stars
Did wander darkling in the eternal space,
Rayless, and pathless, and the icy earth

Swung blind and blackening in the moonless air;
Morn came and went—and came, and brought no day,
And men forgot their passions in the dread

Of this their desolation; and all hearts

Were chill'd into a selfish prayer for light:

And they did live by watchfires—and the thrones,
The palaces of crowned kings—the huts,

The habitations of all things which dwell,

Were burnt for beacons; cities were consumed,
And men were gather'd round their blazing homes
To look once more into each other's face: . . .

Alan Robock

RUTGERS

Department of Environmental Sciences



P’hoto by George C. Martin
KATMAI VILLAGE, LOOKING NORTH TOWARD KATMAI VOLCANO, WHICH IS CONCEALED IN THE CLOUD BEYOND THE HILLS
AUGUST 13, 1912
The eruption of Katmai Volcano, though one of the most violent explosions recorded, did not cause the loss of a single life, owing to the

sparse settlement of the neighborhood. The town of Katmai was deserted at the time of the eruption, most of the inhabitants being away, engaged
in the summer fishing,

Katmai village, buried by ash from the June 6, 1912 eruption
Katmai volcano in background covered by cloud
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GISS ModelE GCM

NASA Goddard Institute for Space Studies
(GISS) ModelE GCM

4°x5° horizontal resolution

Stratospheric version with 23 vertical levels
Gravity wave drag scheme

Fixed climatological SSTs

40-year control run

20 ensemble members for each case

Alan Robock
m-]TGERS Department of Environmental Sciences



NH Summer Surface Air Temperature Anomalies

Significant cooling over most NH land masses especially Asia

Warming over Northern India in 3x Katmai case from reduced monsoon circulation

a) Katmai SAT Anomaly (°C) JJA 1912 b) Katmai SAT Anomaly (°C) JUA 1913
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3x Katmai Cloud Cover Anomaly (%) JJA 1913
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3x Katmai produced less cloud cover over the monsoon region and
increased cloud cover over southern Europe

Consistent with a reduced Indian monsoon circulation

KUTGERS Alan Robock
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High Latitude Volcanic Eruptions with
Stratospheric Injection, as Represented by Katmai

- Radiative impact appears to be larger than dynamic
* High latitude eruptions appear to weaken Indian monsoon
» High latitude eruptions do not cause enhanced negative AO response

- Similar response was seen in first winter following Katmai and second
winter following 3x Katmai in 70 mb geopotential and surface pressure

* A large number of ensemble simulations are needed

- Future simulations could include a mixed layer ocean to see its impact

KUTG E RS Alan Robock
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Agung, 1963
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M1t Agung
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Fig. 2. Observed tropospheric temperatures between 30°N and 30°S (/9) and computed temper-
atures after the eruption of Mount Agung, assuming that the added stratospheric aerosols are
sulfuric acid and the average depth of the mixed layer of the ocean is 70 m.




Mt. St. Helens, May 18, 1980

KUTGERS Alan Robock
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Cliff Mass and Alan Robock
in the Mount St. Helens crater, summer 1980
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Mt. St. Helens, 1980
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El Chichon, 1982

GULF OF MEXICO

YUCATAN
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El Chichon, 1982

——

KUTGERS (Robock and Matson, 1983) Alan Robock
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El Chichon, 1982

Sunset

Madison,
Wisconsin

July, 1982

IQ_ITGERS Photograph by Alan Robock Alan Robock
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El Chichon, 1982

Sunset

Madison,
Wisconsin

May, 1983

IQ_ITGERS Photograph by Alan Robock Alan Robock
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Krakatau, 1883
Watercolor by William Ascroft
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"The Scream”
Edvard Munch

Painted in 1893
based on Munch's
memory of the
brilliant sunsets
following the
1883 Krakatau
eruption.
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The many ways in which the El Chich6n dust B

cloud is being observed (drawn by Thais Faller).

*Seventh Climate Diagnostics Workshop of the National
Oceanic and Atmospheric Administration (NOAA), Boulder, i
Colorado, 22 October 1982; Fall Meeting of the American Camero\;@
Geophysical Union, San Francisco, 10-11 December 1982.
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SAGE I
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One month of SAGE II coverage
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The many ways in which the El Chichén dust
cloud is being observed (drawn by Thais Faller).

*Seventh Climate Diagnostics Workshop of the National
Oceanic and Atmospheric Administration (NOAA), Boulder, i
Colorado, 22 October 1982; Fall Meeting of the American Camero\;@
Geophysical Union, San Francisco, 10-11 December 1982.

RUTGERS Robock (1983) Alan Robock

Department of Environmental Sciences



RADIANT
HEATER

N
m
~
m
-
3
)
3

AL S N . Fima T o) :k
Department of Environmental Sciences




RUTGERS




Pinatubo
June 12, 1991

Three days
before major
eruption of
June 15, 1991

KUTGERS - - T s i ¥ -. f]* St Alan Robock

~ Department of Environmental Sciences



These two photos show the Earth's
limb at sunset before and after the
Mt. Pinatubo eruption. The first view
(5TS41D-32-14) shows a relatively
clear atmosphere, taken August 30,
1984. Astronauts were looking at the
profiles of high thunderstorms topping
out at the tropopause at sunset;
different atmospheric layers
absorbed the last rays of light from
the sun as the spacecraft moved
eastward.

August 30, 1984

The same type of photograph
(5T5043-22-23) was taken August 8,
1991, less than two months after the
Pinatubo eruption. Two dark layers of
aerosols make distinct boundaries in
the atmosphere. The estimated
altitude of aerosol layers in this view
is 20 to 25 km.

Alan Robock
Department of Environmental Sciences




Available SAGE Il Measurements for September and October 1991
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After Pinatubo, Clark Air Force Base
25 km from volcano

E B e o Reas ' } Alan Robock
IQ—]TGERS Photo by R. P. Hoblitt, June 15, 1991  Department of Envir‘onmen'ralagci(;n?:ZS
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After Pinatubo, Subic Bay Naval Base
35 km from volcano

&JTGERS Photo by Tom Grzelak Alan Robock

Department of Environmental Sciences
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Diffuse Radiation from
Pinatubo Makes a White Sky

Photographs by Alan Robock

RUTGERS Alan Robock
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transmission factor

Broaodband atmospheric

Mauna Lea Observatory (13°N)
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Broadband solc:r radiation, Mauna Loa Observotory (‘|9 N)
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Nevada Solar One
64 MW

Seville, Spain
Solar Tower
11 MW

http://www.electronichealing.co.uk/articles/solar_power_tower_spain.htm

UTGERS

Solar steam generators
requiring direct solar

http://judykitsune.wordpress.com/2007/09/12/solar-seville/

Alan Robock

Department of Environmental Sciences




i 100 ] — 700
£ ] /\ - 600
o)
- ° 7]
r 34 % Annual sdlar output 500 @ \
O : o
o 60— \ 4 7
£ - — 400 ¢n
£ i C
a 1 . 2
= 40 ak capacity 300 O
® S
& g
UOJ 1 — 200 S
o 20— :
5 . — 100~
0 — — 0
(b) 1 | | I | —
1990 1992 1994 1996 1998

Year

Output of solar electric generating systems (SEGS) solar thermal power plants in
California (9 with a combined capacity of 354 peak MW). (Murphy, 2009, £54T)
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NOAA ESRL — Custom Graph

Data provided by: R MLQ (19N; 155w; 3397 mosl}
o Carbon Cycle |n Situ Observatory (Sample fntake Height: 3437 masl
395 Kirk W Thoning (GMD)
April 16, 2011
3944 ™ -
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(Preliminary Data shown i
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Global Distribution of Atmospheric Carbon Dioxide
NOAA ESRL Carbon Cycle
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Principal investigator: Thomas Conway, NOAA CMDL Alan Robock
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Possible causes of interannual CO, variations

- Changes in emissions
- Land use changes

- Unusual atmospheric temperatures or precipitation
(e.g., drought)

- El Nifo and La Niia episodes

- Volcanic eruptions through effects on diffuse
radiation

RUTG E RS Alan Robock

Department of Environmental Sciences




Rate of increase of CO5 in the atmosphere
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El Chichdn Pinatubo

Additional carbon sequestration after volcanic eruptions because of
the effects of diffuse radiation, but certainly will impact natural
and farmed vegetation.

nature Vol 458|23 April 2009| doi:10.1038/nature07949

b m— —

LETTERS

Impact of changes in diffuse radiation on the global
land carbon sink

l | Lina M. Mercado', Nicolas Bellouin®, Stephen Sitch®, Olivier Boucher’, Chris Huntingford', Martin Wild” Alan Robock
& Peter M. Cox’ pbnmental Sciences
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Summer Cooling
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Precipitation Change at Seasonal Resolution

Low Lat1tudes (24°N- 24°S)
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Drawn by Makiko Sato (NASA GISS)
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Trenberth and Dai (2007)

Effects of Mount Pinatubo
volcanic eruption on the
hydrological cycle as an
analog of geoengineering

Longwave

Radiative anomalies W m2
O W

Geophys. Res. Lett.

1 1 1
1986 1990 1994 1998

Figure 2. (top) Adapted time series of 20°N to 20°S 1.24 =
ERBS non-scanner wide-field-of-view broadband short-
wave, longwave, and net radiation anomalies from 1985 to

1000 T'TI5.71 - NN o D
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are defined with respect to the 1985 to 1989 period with
Edition 3 Rev 1 data [Wong et al., 2006]. (bottom) Time
series of the annual water year (Gct. to Sep.); note slight
offset of points plotted vs. tick marks indicating January
contmental freshwater discharge and land precipitation
(from Figure 1) for the 1985 to 1999 period. The period
clearly influenced by the Mount Pinatubo eruption is
indicated by grey shading.
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Trenberth and Dai
(2007)

Effects of Mount
Pinatubo volcanic
eruption on the
hydrological cycle as

—B0 ] 1 gl | = I 1 I ! I 1

an 0n0I09 Of 7_5180 c_I:’za?ImerDrouﬁt Severity Index (PDSI*01),10/1991 9/1992 80
geoengineering o~k

Geophys. Res. Lett. 15
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Figure 3. (a) Observed precipitation anomalies (relative to 1950-2004 mean) in mm/day during October 1991-
September 1992 over land. Warm colors indicate below normal precipitation. (b) As for Figure 3a but for the simulated
runoff [Qian et al., 2006] using a comprehensive land surface model forced with observed precipitation and other
atmospheric forcing in mm/day. (c) Palmer Drought Severity Index (PDSI, multiplied by 0.1) for October 1991 —September
1 1992 [Dai et al., 2004]. Warm colors indicate drying. Values less than —2 (0.2 on scale) indicate moderate drought, and
those less than —3 indicate severe drought.
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Summer monsoon drought index pattern using
tree rings for 750 years

Ammann et al. 2007 (n 16) Ammann and Naveau 2003 (n = 53) Fischer et al. 2007 (n = 14)
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Figure 2. Superposed epoch analysis using the reconstructed PDSI values from the Monsoon Asia Drought Atlas
(MADA) [Cook et al., 2010] and the sets of events years shown in Table 1. Statistically significant (90% one-tailed)
epochal anomalies based on Monte Carlo resampling (n = 10,000) are indicated by crosses.

Anchukaitis et al. (2010), Influence of volcanic eruptions on the climate of the Asian
monsoon region. Geophys. Res. Lett., 37,L22703, doi:10.1029/20106L.044843
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FIG. 1. (a) Results of superposed epoch analysis of modeled
summer precipitation for 18 cases of large volcanic eruption
showing the response of summer precipitation over eastern China.
Bootstrapping procedures are used to assess the statistical signifi-
cance of summer precipitation above and below the mean. The
dashed and dotted lines represent confidence intervals of 90%,
95%, and 99% derived from 1000 Monte Carlo simulations. (b)
Spatial pattern of composite anomalies of summer precipitation
over East Asia and tropical oceans during the volcanic eruption
year for 18 cases of large volcanic eruption; yellow box shows our
study area.

NCAR CCSM 2.0.1 simulation
for past 1000 years

Peng, Youbing, Caiming Shen, Wei-chyung Wang, and
Ying Xu, 2010: Response of summer precipitation
over Eastern China to large volcanic eruptions.
J. Climate, 23, 818-82b.
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NCEP Observations
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Hatching shows
90% significance
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SKYHI simulations

Zonal mean
temperature
anomaly (K)
at 50 mb
caused by
aerosols only (A)

Hatching shows
90% significance

NCEP observations
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QBO forcing

du <U>_Uclim —Uoeo

dt «(p,0)

(oY
UQBo(p1(|),t): USing % @ (130j

Using - SMmoothed deseasonalized monthly-mean Singapore zonal wind

b - latitude, p - pressure, t(p,9) - characteristic time
t(p,0) > 5 day for 0.0 hPa <p< 100 hPa
<U> - zonal mean zonal wind

U.im - ¢/imatological mean of zonal mean zonal wind
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SKYHTI simulation
Zonal mean zonal wind
(m/s) from 11-year QBO
control run

Observed zonal mean zonal
wind (m/s) at Singapore
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SKYHI simulations

Zonal mean
temperature
anomaly (K)
at 50 mb
caused by
QBO only
(from QBO control
run)

Hatching shows
90% significance
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SKYHI simulations

Zonal mean
temperature
anomaly (K)
at 50 mb
caused by
aerosols and QBO (AQ)

Hatching shows
90% significance

NCEP observations
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SKYHI 4-ensemble mean - 50 mb temperature anomaly
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Winter (DJF) 1991-92
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Satellite dato courtesy of John Christy, University of Alabama, Huntsville
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coral death in the Red Sea
in the winter following the
Pinatubo eruption.

Cooling induced mixing,
bringing nutrients which
produced an algae bloom,

which smothered the
coral.

a. Dec. 15, 1994 (normal)

b. April 6, 1992 (after
Pinatubo)
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Winter (DJF) 1991-92
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Satellite data courtesy of John Christy, University of Alabama, Huntsville
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Winter (DJF) 1992-93

Average Lower Troposphere Temperature Anomalies (°C)
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Satellite data courtesy of Jehn Christy, University of Alabama, Huntsville
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Winter (DJF) 1982-83

Average Lower Troposphere Temperature Anomalies (°C)
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Krakatou 1B83—84 Tarawera 18BB6=87 Bandal 1889=80

Winter Warming for
largest eruptions of the
past 120 years

Observed surface air
temperature anomalies

Robock and Mao (1992)
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The Arctic Oscillation signature in the wintertime geopotential

height and temperature fields (Fig. 1 maps)

David . J. Thompson and John, M. Wallace
Geopbrpsical Research Letters, May I, 1008

Trapopauas height (WK) BOZ M)

Ao

The Arctic
Oscillation

Thompson and
Wallace (1998)

Stronger polar vortex

Winter warming — |

Positive mode is the
same as the response
to volcanic aerosols.

Figure 1. Regression maps for geopotential height (meters), tropopauss pressure (Pa), 1000-300-
hPathiclmess (m), SLP (expressed as Zygon: w) and surface air temperaturs (SAT- E) anomaliss
as mdicated, based upon the ADQ indax for 1047-10907, Sse taxt for datails,
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SKYHI Experiments

Ensembles of 2-year runs with specified climatological SST:

e Aerosols with stratospheric and surface forcing (A)
- 8 ensemble members

e Aerosols with only surface Cooling (no stratospheric heating) (C)
- 4 ensemble members

e Observed Ozone anomalies only (O)
- 6 ensemble members

e Aerosols + QBO with stratospheric and surface forcing (AQ)
- 4 ensemble members

Alan Robock
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Volcanic aerosols produce more
reactive chlorine

Observed Changes in Chemical Partitioning Due To the Eruption of Mt. F’muiubo
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“stratospheric gradient” mechanism
“tropospheric gradient” mechanism
“wave feedback” mechanism

"QBO phase” effect

Ways Volcanic Eruptions
Force Positive AO Mode

in Winter

Aerosol heating
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Increased height gradient
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cooling | | polar vortex
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North Pole
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