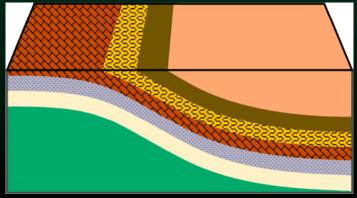


Steep Terrain and the Evolution of Martian Surface Environments: Implications for Habitability (and its evaluation)

Pamela Conrad conrad@jpl.nasa.gov

To understand the evolution of a surface environment, you must either have *direct access* to earlier surfaces in the stratigraphic record or you must have indirect access to the former surfaces from knowledge of the processes that have affected the present surface. *That is circular reasoning*.



Exposed strata can provide access to more time than a flat surface, unless there are geologic processes at work that expose layers at an angle:

Mars looks pretty hostile relative to its past environment. Can we find a particularly catastrophic moment in Martian history that decreased its habitability potential?

There are four ways that we could potentially access the Martian subsurface:

- 1.We could drill beneath the present surface
- 1.We could access exposures of former surfaces at the *present surface*.
- 1.We might happen across volcanic ejecta. That gives an idea of what is happening beneath the surface, but is not informative regarding the past surface.
- 1.An impact event might excavate former surface material as ejecta. But you lose context.

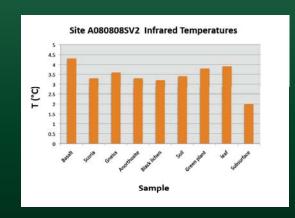
Exposed Steep Terrain Advantages

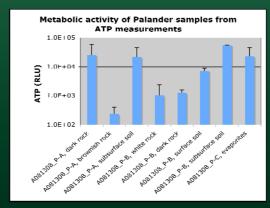
- One can access more layers of exposed former surfaces than are accessible via a modest length drill (potentially 100s of meters)
- The structural context remains in place
- One can measure some features of the present environment and compare values measured from the previous surfaces in real time

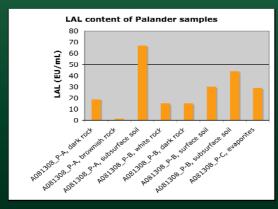
These features allow one to conduct a contemporary habitability assessment simultaneously to an examination of past surfaces. This takes the investigation out of the realm of a snapshot and enables characterization of a process--

What things might we measure about the surface that tell us something about habitability?

Physical	Chemical	Biological
Altitude	Elemental abundance	Vegetation Survey
Latitude/longitude coordinates	Organic inventory	Biodiversity and spatial distribution (by PCR)
Solar radiation (λ and intensity)	Stable isotopes of C and O	Functional diversity (by PCR)
Temperature of rock or soil and air	Abundance and state of water	ATP/LAL
Mechanical stability (slope, etc.)	Mineral content (and rock type)	
Electrical/magnetic environment	Total Nitrogen	
Wind speed, direction & variability	Volatile inventory (air)	
Humidity	Volatile Inventory (in rock & soil)	
General geomorphology		
Geophysical environment (volcanism, seismicity, impact evidence, etc)		
Sedimentary structures		

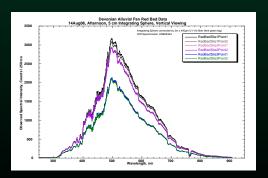

How are these measurements about the contemporary surface accomplished on former surfaces?





In Situ vs "Returned" Samples

- We could drill beneath the present surface
- 1. We could access exposures of former surfaces at the present surface.



These must be done in place

"In place" is relative. What measurements and relationships might be lost by hacking off a piece of the surface and looking at it later?

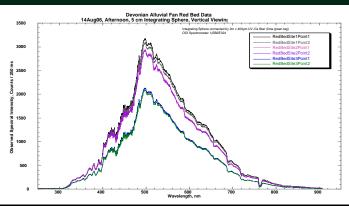

Environmental Physics Measurements

Photo by Kjell Ove Storvik

- Ionizing radiation environment
- Mechanical environment (impacts, mass transport). This requires the big picture (literally), as well as smaller spatial scale clues.
- Electromagnetic environment
- Thermal history
- Solar environment

Time-resolved Measurements: Chemical composition and mineralogy

- Do chemical strata show cyclical trends or non-recurring gradients (or discontinuities)?
- Do changes in geochemistry cross mineralogical horizons? Are they diachronous or synchronous?
- Do they follow distinct textural characteristics such as grain size
 & shape, color horizons, etc?
- What relationship do spatially-resolved chemical measurements have to temporally resolved ones?

"Desirements" Challenges

- How do you minimize surface disturbance?
- How do you maintain the same distance from the surface at each measurement point?
- How does the robot decide upon sampling intervals?
- Should the robot make its own digital elevation models?
- Should it rappel down to full extent and then climb up?
- How many sites along a cliff or crater wall should be representative of the larger structure? In other words could we have multiples units that provide time-synched and elevationsynched measurements?
- Can communications be networked between units and a meteorology package on a platform?

Summary

- 1. Steep terrain access enables near real-time comparison of both present and past surface environments.
- 2. Chemical, mineralogical and textural measurements are made in context.
- 3. We already have an idea of some of the technical challenges:
 - tether or not?
 - maintaining focal lengths for all measurements
 - Acquisition of samples: small cores, powders, how to store samples and how to hand them off later
- 4. A significant amount of thought needs to be given to operational design.

