Mission Constraints for Extreme Terrain Exploration of the Lunar Surface

John Elliot Andrew Johnson Jet Propulsion Laboratory California Institute of Technology

Lunette Mission Overview

Landing Considerations

- Nature of landing site demands special consideration
 - ◆ Narrow strip (~ 5 km x 1 km) for landing in "permanently lit" area
 - Hazardous drop-off if landing approaches crater rim
 - Landing site on crater rim likely to have abundance of rocks and other hazards
- Surface hazards also affect operational risks
 - Earth and Sun are at horizon
 - Relatively small surface features/boulders can shadow solar arrays or block view of Earth for communications

63° Off Nadir

Flash Lidar Images For Hazard Detection

ALHAT HDA requirement is to detect 0.3m high rocks

7° Off Nadir

ALHAT

Terrain Relative Navigation

Lunar Landing Error Ellipse without TRN ~1km x 0.250km 3σ

Lunar Landing Error Ellipse With TRN 90x90m 3σ

Purpose of TRN enables pin-point landing

There are multiple TRN approaches

ALHAT TRN requirement is 30m 1 σ under any lighting conditions

1-10m precisions are possible with passive optical approaches

Passive Optical TRN: APLNav Images

Passive Optical TRN: MAIA Landmark Matches

