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The problem(s)

Assume you have an image in which you are looking for a planet.

T(n) = lhyy(n) +€A(n).
We call y the random state of the telescope-+instrument at the exposure.
The problem we want to solve is to figure out what are the relative

contributions of the light diffracted within the instrument and of an
hypothetical astrophysical signal.

@ We can have a really good model of our instrument.

o We “construct” a really good model of our instrument based on its data
history (science frames+telemetry).

@ We get more realizations of Iy, for which we are sure that there is no
astrophysical signal. We subtract them from T.
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Observing strategies

How to get more realizations of the instrument response?

o Take images of other sources.

Target Image
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eA(n)? = lyo (n) = hy, (n) o

What to watch for:
@ The telescope + instrument must be a0t
very stable.

@ The alignment of the images needs to
be very precise (the star needs to be on |
the same fraction of a pixel).
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Observing strategies

How to get more realizations of the instrument response?

o Take images of other sources.
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Observing strategies: PSF subtraction
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Observing strategies

How to get more realizations of the instrument response?
o Take images of other sources.

@ Take images at other wavelengths/telescope orientations.

R(n) =y, (n) +€A(n—3nl, g) or R(n) = ly,(n—38nl,¢)+€A(n)

Credit: P. Ingraham and the GPI team



PI_beta_pic_boiling_speckles.mov
Media File (video/quicktime)
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Observing strategies

How to get more realizations of the instrument response?
o Take images of other sources.

@ Take images at other wavelengths/telescope orientations.

R(n) =y, (n) +€A(n—3nl, g) or R(n) = ly,(n—38nl,¢)+€A(n)

Credit: P. Ingraham and the GPI team
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LOCI - KLIP

Sol\l;ilng the least squares Several routes to invert this
roblem:
P @ Tweak set up of the inverse problem
min (geometry, selection of references)

2 o Regularize of the inverse problem (SVD
{):"<T( )~ Rk(n)) } truncation, PCA)
Equivalent to: Image, or part of image K pixels in zone

| |

E[RR]C =T

where E[RR] is the
correlation matrix of the
ensemble of references over
the zone of the image we
chose.
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LOCI - KLIP

Several routes to invert this

Solving the least squares
problem: o Tweak set up of the inverse problem

(geometry, selection of references)
min ) o Regularize of the inverse problem (SVD
{):n <T(n)— Rk(n)) truncation, PCA)

.

Equivalent to: S
E[RRIC=T
Where E[RR] is the K pixels in zone K pi .

. . _ pixels in zone
correlation matrix of the z I
ensemble of references over 3 - ™ X -
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LOCI - KLIP

Solving the least squares

Several routes to invert this

problem: -
@ Tweak set up of the inverse problem
min (geometry, selection of references)
2 @ Regularize of the inverse problem (SVD
T(n)— Re(n)” p. .
{):" ( (n) k(n) } truncation, PCA)
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Classical PCA
[ 1e]

LOCI - KLIP

Several routes to invert this

Solving the least squares -
@ Tweak set up of the inverse problem

problem:
(geometry, selection of references)
min o Regularize of the inverse problem (SVD
5 ,
{):n <T(n)— Rk(n)) } truncation, PCA)

Astrophysical source in - Astrophysical source in refrences
target image images kept in PSF library

Equwalent to: Radial motion Nﬁs'/ Astrophysical source in refrences
of signal s - ejected from in PSF library
= across PSF '~ -
E[RRIC=T N

A
library (SSDI) ™ 4 \N&;r *, Azimuthal motion of

n N ) \, signal across PSF library
where E[RR] is the ws AT == |(AD])
. . " 6
correlation matrix of the : oy P —
ble of ref 0ee-3 ar=1%
ensemble of references over r=

the zone of the image we
chose.



Classical PCA
[ 1e]

LOCI - KLIP

Solving the least squares
problem: Several routes to invert this

. @ Tweak set up of the inverse problem
min .
) (geometry, selection of references)
{zn (Tn)- Re(n))

@ Regularize of the inverse problem (SVD
truncation, PCA)

A

Equivalent to:
K pixels in zone

E[RR]IC=T > | |
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where E[RR] is the 3 = [ | X X

correlation matrix of the 3 L I
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ensemble of references over penalty terms

the zone of the image we N references
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LOCI - KLIP

Several routes to invert this

Solving the least squares
problem: @ Tweak set up of the inverse problem
(geometry, selection of references)

MM {e) o Regularize of the inverse problem (SVD

{2,, (T(n) -k o Rk(n)>2}_ truncation, PCA)

Equivalent to:
EIRRIC=T i
where E[RR] is the

HE [ ]

K iixels in zone

N references
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ensemble of references over
the zone of the image we
chose.
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Classical PCA
[ 1e]

LOCI - KLIP

Solving the least squares
problem: Several routes to invert this

@ Tweak set up of the inverse problem

5 (geometry, selection of references)

{Zn (T(”) - L/{Ll Ck Rk(”)) } @ Regularize of the inverse problem (SVD
truncation, PCA)

mln{(‘ !

Equivalent to:

Npca Modes
E[RR]C =T K pixels in zone
[
where E[RR] is the ” :
correlation matrix of the
ensemble of references over K
plxels in zone

the zone of the image we
chose.
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This is where the magic happens

Marois et al. (2008), Marois et al. (2010)
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This is where the magic happens

Marois et al. (2008), Marois et al. (2010)
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This is where the magic happens

Oppenheimer et al. (2013), Pueyo et al. (2015)
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This is where the magic happens

Soummer et al. (2011)
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This is where the magic happens

Rameau et al. (2012)

0.5" = 45.2 AU 0.5" = 45.2 AU
o 26//06 cADI

27/06 sADI

0.5" =i45.2 AU 05" = 45.2 AU
27/06 Leiden/PCA
)

27/06 A—LOCI




Forward Modeling
®00000000

Problem....PSF subtraction algorithms also subtract the signal
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Problem....PSF subtraction algorithms also subtract the signal

The least squares speckles fitting in the presence of signal can be written as:

2
min e {En ([ )+ Aa(o)] = E1C 61+ 5y, () + Ag )]
Image, or part of image : K pixels in zone |
+ T
I e
z
B )
+ @
I L — 3
L B s

Contribution of stellar PSF  Contribution of faint signal
[ Stellar PSF Coefficients

[0 Perturbation to coefficients due to faint signal
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Problem....PSF subtraction algorithms also subtract the signal

Solution is to inject a negative model of the signal in the entire observing
sequence and minimize the residuals over a range of hypothetical astrophysical
observables. This can be done in conjunction with any of the algorithms
described before. Marois et al. (2010), Lagrange et al. (2012).

Image, or part of image Kpixels in zone
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Contribution of stellar PSF  Contribution of faint signal
[ stellar PSF Coefficients

[ Perturbation to coefficients due to faint signal
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Problem....PSF subtraction algorithms also subtract the signal

Solution is to inject a negative model of the signal in the entire observing
sequence and minimize the residuals over a range of hypothetical astrophysical
observables. Example of a grid search for astrometry and photometry,
Morzinski et al. (2015).

Parabola fit to x guesses vs. PCA 20 resids, uniforn  Parabola fit to y guesses v. PCA 20 resids, uniforn  Parabola fit to flus guesses vs PCA 20 resids, unifo
1.0] + 1.0]
. . ; .
+ 5
+ 3o
: * £ + +
o O
0.6 npl = 0.4553239 " +/- 0.D0G01 " SNR-FWEM err o SNR-FWHM orr %06
0.5 | SHR-1 Fl!ll I - 0/ 0.50536 pi 0.5] ul—m ery = o/ o 50536 pix 0.5 +/- 0.0586 mag SHR err
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Problem....PSF subtraction algorithms also subtract the signal

Solution is to inject a negative model of the signal in the entire observing
sequence and minimize the residuals over a range of hypothetical astrophysical
observables. Example of an MCMC for astrometry and photometry, Bottom et
al. (2014).
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Problem....PSF subtraction algorithms also subtract the signal

Solution is to inject a negative model of the signal in the entire observing
sequence and minimize the residuals over a range of hypothetical astrophysical
observables.

Main drawbacks

@ The speckle subtraction algorithm has to be used each time around
(involves a matrix inversion).

@ There is no guarantee that the cost-function minimized/likelihood explored
does not feature local minima. One might get stuck in them.

@ In general these are not limiting factors in ”small dimensional
configurations” ( astrometry and photometry = 3 dimensions).

@ This becomes a severe limiting factor when trying to get spectrum
(astrometry and spectrum = 39 dimensions with GPI).
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Fortunately, we can actually predict what will happen

There is a way to write the influence of the astrophysical signal as:

PCA(Speckles + Signal) = PCA(Speckles) + Signal 8 PCA(Speckles)

...and this applies to any algorithm relying on covariances. Pueyo (2016).

Linear Model Horizontal cut Vertical cut

Injected

Raw Data Reduced Data

speckles

Counts
Counts

Aggressive reduction: N = 5, Ny = 4, Ncorr = 50, Kkiip = 50, Ns = 0.6.
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Fortunately, we can actually predict what will happen

There is a way to write the influence of the astrophysical signal as:
PCA(Speckles + Signal) = PCA(Speckles) + Signal 6 PCA(Speckles)

...and this applies to any algorithm relying on covariances. Pueyo (2016).
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Reduced Data
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Fortunately, we can actually predict what will happen

There is a way to write the influence of the astrophysical signal as:
PCA(Speckles + Signal) = PCA(Speckles) + Signal 6 PCA(Speckles)

...and this applies to any algorithm relying on covariances. Pueyo (2016).

Linear Model Horizontal cut Vertical cut

Reduced Data

Raw Data

Counts
Counts

Non aggressive reduction: N, = 5, Ny =4, Neorr = 30, Kkiip = 30, N5 = 1.
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Fortunately, we can actually predict what will happen

There is a way to write the influence of the astrophysical signal as:

PCA(Speckles + Signal) = PCA(Speckles) + Signal 6 PCA(Speckles)
...and this applies to any algorithm relying on covariances. Pueyo (2016).
Linear Model

Raw Data Reduced Data Horizontal cut Vertical cut

Point Source 4 x fainter than speckles
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Aggressive reduction: N; = 5, Ny =4, Ngorr = 50, Kkiip = 50, N5 = 0.6.
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Fortunately, we can actually predict what will happen

There is a way to write the influence of the astrophysical signal as:

PCA(Speckles + Signal) = PCA(Speckles) + Signal 6 PCA(Speckles)
...and this applies to any algorithm relying on covariances. Pueyo (2016).

Raw Data Reduced Data Linear Model Horizontal cut Vertical cut

Point Source 4 x fainter than speckle

Counts
Counts

Honzomd;
Cut

b=
o

The linear model works:

o If the astrophysical source is faint when compared to the speckles.

o If the astrophysical source as bright as the speckles/brighter, and the
algorithm parameters are chosen accordingly (not too aggressive).




Forward Modeling
[e]e] le]e]ele]e]e]

The details

Perturbation of the covariance matrix

Crr = R(X)R(X)T
Crr = 100)1(x)7 +eahy, s +el(x)Ay, s(x)7a’ +e%ah;, 5(x)A;, 5(x)"a”
Crre = Cu+eCan+0(e?).

Perturbation of the eigenvalues/vectors of covariance matrix

Fk = /\k+£ VkTCA6|Vk
Ng VT Cp Vi
U = Vi+e TR Ry
jzlz-j'#k Ne=A
Perturbation of the Principal Components
Yk(X) = Zk(x)-‘rSAZk(X)
eAZ(x) = ea] AZ (x)=1fAZ (x)
S
A _ A T
8zl = b [VkAg(x)I(x) Vie Zi(x) + VicAgy 5(6) + ..
Ny /N
Y Y (Vs (1) TV ViAs(01(0)T Vi) Z(x)
J=Lyk kT
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The details

Perturbation of the covariance matrix

Crr = RE)RX)T
CRR = |(X) I(x)T+£aA;Lp015(x)l(x)T+s |(X)A%U75(X)T3T+SzaAlpo_S(X)Alpoﬁa(X)TaT
Crr = Cu+eCan+0(e?).

Perturbation of the eigenvalues/vectors of covariance matrix

I'k = /\k+8 VkTCA5|Vk
N VTCanVi
Ue = Vi+e L Ty
j:;j’;’:k A=
Perturbation of the Principal Components
Yk(x) = -‘rSAZk(X)
eAZ,(x) = ea] AZ M (x)=F AZ(x)
S
A _ A T
8z = v [VkA,;(x)I(x) Vie Zi(x) + VicAgy 5(6) + ..
Ng /N
= (VA5 ()1(x) TV + ViAs (x)1(x) T Vi) Zj(x)
Iy
Jj=1j#k J
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What does it mean?

Yi(x) = Zk(x) + €A Z,(x) . We can rank them in order of |[eAZ,(x)/Zk(x)||.

Three main terms:

@ over-subtraction: unperturbed
Principal Components Zj(x). Scales as
1Zk(x)[] = 1.

@ direct self-subtraction: presence of an
astrophysical source at various
parallactic angles and wavelengths in
the observing sequence multiplied by
LOCI coefficient. Scales as €/+/A.

@ indirect self-subtraction: perturbation
in the LOCI coefficient. Scales as
S/Ak.

Normalized residual variance

F

100k RE
0

KLIP truncation

V.

As Kyjip(e.g A decreases) then self-subtraction becomes more and more
dominant... estimation of astrophysical observables becomes increasingly
complicated.



Forward Modeling
[e]e]e] le]ele]e]e]

What does it mean?
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Three main terms:

@ over-subtraction: unperturbed o1l
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KLIP truncation

V.

As Kyjip(e.g A decreases) then self-subtraction becomes more and more
dominant... estimation of astrophysical observables becomes increasingly
complicated.
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What does it mean?

Pueyo et al. (2015).

Raw cube 1 Rescaled cube

A\ [ . N
s 0.0 O Point Source )\
a, o, %,Q O Speckle

. B gt
1 [, o | Ns
)‘ko Q.O‘ 8‘0« o, ‘ B,
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What does it mean?

Pueyo et al. (2015).
Photometry

6 T T T 3l
E Forward Modeling

57§ 3 ‘

Flux arbitrary Units

‘No Forward ™™
Modeling

. , . 0 100 200 300 400
K Clip — 200 K Clip — 400
iz 2ip Number of PCA modes
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What does it mean?

Yi(x) = Zk(x) + €AZ,(x) . We can rank them in order of ||eAZ(x)/Z(x)]].

Three main terms:

@ over-subtraction: unperturbed
Principal Components Zj(x). Scales as
1Zk ()| = 1.

o direct self-subtraction: presence of an
astrophysical source at various
parallactic angles and wavelengths in
the observing sequence multiplied by
LOCI coefficient. Scales as &/v/Ax.
Esposito et al. (2012) woly

Normalized residual variance

% g T O T R - )
o indirect self-subtraction: perturbation KLIP truncation
in the LOCI coefficient. Scales as
€/Nk. Brandt et al. (2013).

As Kyjip(e.g A decreases) then self-subtraction becomes more and more
dominant... estimation of astrophysical observables becomes increasingly
complicated.
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Application to spectral extraction

Injected vs extracted spectrum
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Application to spectral extraction

Injected vs extracted spectrum
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Application to spectral extraction

Flux (arbitray units)

Injected vs extracted spectrum
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Application to spectral extraction

Injected vs extracted spectrum
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Application to spectral extraction

Injected vs extracted spectrum
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Application to spectral extraction

Application: ,6
YJHK Spectrum of B Picb

Multi-band spectrum of Beta Picb
using latest calibration methods
g 6 i 3 i
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P T ki
L] i -
= "'u‘iwl\l !
& |
2./l
M |’ ||
0
——"Best it Spex BD: 2WASS J05361998-122039 «— |ow-gravity and young
[ (Faherty et al. 2013)
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Chilcote, Pueyo, De Rosa, et al. In prep.
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Wang et al.
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Application to astrometry

Wang et al. (2016).

0.6
g 04
<
= 02 a
g 00p---noooooo N
< 02
= —oalff sy
< & This Work
“Ofioz 2001 2006 2008 2010 012 2011 2006 2018 2020

B

rad

2002 2004 2006

VA
2008 2010 2012 2014 2016 2018 2020

2006 2008 2010 2012 2014 2016 2018 2020
Date (year
ate (your) Wang et al.



Forward Modeling
000008000

Application to astrometry

Wang et al. (2016).
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Application to planet detection

Synthetic point source (triangular spectrum) in GPI J band data

Point source 4 x fainter than speckles

ard Modeling for the detection problem

i 001 @ Forward Modeling does not change the
£ e b False Positive Fraction (= d h
& 00054{’@. ) alse Positive Fraction (7 oes not change
€ the post KLIP speckles statistics).
o 4

o Forward Modeling changes the True

SR 720 ]

- 5 1.30 1.3 e . _
ogram of flux in "blue Histogram of flux in "red i Positive Fraction (— does Change the post
channels" chapnels" i o
KLIP + Apefture T PPN KLIP astrophysical flux). )
o Point / ‘Apertur
ry
Bpsiihaly Receiver Operating Characteristic for

Source / \

//\ § Point / i - point sources 4 x fainter than speckles
Source Point T

// \\ ‘ / )( Source

Counts
Counts

-05 0.0 05 1 -05 0.0 05 1.0 15 g
Estimated Flux Estimated Flux T
8
KLIP + Forward Modeling 1 KLIP + <
@
Forwar i 2
No Point f L . No Point 8
L A &
Source ’ \ / Source )
E]
P Point s ----- Poin g
§ Source B J \ Source
/ TH \
\ L 0.0 : : : :
= .0 0.2 0.4 0.6 0.8 1
-05 0.0 0.5 10 -05 00 05 10 15 20 25 False Positive Fraction

Estimated Flux Estimated Flux



Forward Modeling
0O00000e00

Application to planet detection

Synthetic point source (triangular spectrum) in GPI J band data
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Application to planet detection

Ruffio et al., in prep.

Classic KLIP FMMF

VS.

Fake Planets
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Application to planet detection

Ruffio et al., in prep.
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* The subtracted model includes planet
signal, which results in self-subtraction.



Application to planet detection

Ruffio et al., in prep.
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Application to planet detection

Ruffio et al., in prep.

The Forward Model improves the throughput
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Application to planet detection

Ruffio et al., in prep.

Movement Optimization
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Application to planet detection

Ruffio et al., in prep.

- FMMF improves the SNR
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Application to planet detection

Ruffio et al., in prep.

ROC for Different Metrics
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Application to planet detection

Ruffio et al., in prep.

Threshold
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Signal-to-Noise Ratio
The (ROQ)
indicates the cost of a true detection in term
of false positives. It is the right tool to
compare detection metrics.

from different metrics should
be drawn at the same false positive rate,
which is not necessarily 50.
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Contrast curves and completeness

Macintosh et al. (2015)

How are survey results presented

‘ ‘ @ Pick the "right” contrast curve for

v ; :
104 Y P S0 v <1 Tor e — — F each star. Delta mag vs separation.
Keck 45 min -----
o Convert into Mass vs SMA using your
g favorite model for mass-luminosity and
€ 10% i . .
g Monte Carlo simulations to explore all
© . .
g possible orbits.
3
© o0k o o Convert into Mass vs SMA using your
favorite model for mass-luminosity and
107 analytical propagation of priors.

. . .
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@ Sum over all stars in survey.
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Contrast curves and completeness

Threshold How are survey results presented
|

| . P

e *% Construction of a o Pick the “right” contrast curve for
1 %, ROC curve each star. Delta mag vs separation.
1 w

@ Convert into Mass vs SMA using your

1 Signal-to-Noise Ratio favorite model for mass-luminosity and
The (ROC) Monte Carlo simulations to explore all
indicates the cost of a true detection in term possible orbits.
of false positives. It is the right tool to
compare detection metrics.

from different metrics should

be drawn at the same false positive rate,
which is not necessarily 50. @ Sum over all stars in survey.

@ Convert into Mass vs SMA using your
favorite model for mass-luminosity and
analytical propagation of priors.
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Contrast curves and completeness

Wahhaj et al. (2013)

dE
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% [ possible orbits.
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3 | analytical propagation of priors.

181" Targets with 54 << H <538 ] @ Sum over all stars in survey.

v b b b e by

1 2 3 4 5
separation (arcseconds)



Other methods

Conclusion
o0

Moving forward with data analysis

By and large most of the community is using “blind” Principal Component
Analysis to analyze high-contrast imaging data. This is an ancient method!
There is room to do better:

Use correlation between telemetry and images (Vogt et al., 2010).

Use the images (and maybe telemetry) a physical model of the complex
field at the telescope entrance (Ygouf et al., 2012).

Give up on the L2 norm (L1 norm?).

Use only positive modes and positive coefficients (Non Negative Matrix
Factorization).

“Track” the motion of the planet in the data (low rank sparse
decomposition, LLSG, Gomez et al., 2016).




Conclusion
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Thank you
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