BLAST

Balloon-borne Large-Aperture Submillimeter Telescope

Antarctica 2006: First Extra-galactic Survey Results

Mark Devlin University of Pennsylvania

UBC Ed Chapin Mark Halpern Gaelen Marsden Douglas Scott

CDF (France) Guillaume Patanchon

U of T Peter Martin Barth Netterfield Marco Viero Don Wiebe

JPL Jamie Bock UPenn Simon Dicker Jeff Klein Marie Rex Chris Semisch Matt Truch

Brown University Greg Tucker U of Miami Josh Gundersen Nick Thomas

INAOE (Mexico) David Hughes Itziar Aretxaga

U Puerto Rico Luca Olmi Cardiff University Peter Ade Matt Griffin Peter Hargrave Phil Mauskopf Carole Tucker Enzo Pascale

Photo: Mark Halpern

Lot's of Galaxies Out There

Where is the **ENERGY** going?

Background Light in the Universe

Cosmic Infrared Background

Submillimeter Photometry

Simultaneous 500, 350, 250 µm imaging

BLAST filters: sensitive to **bolometric flux** colours function of **redshift**

bolometric luminosity (SFR)

The BLAST Telescope vs. The HUMMER

Approximately the same size and weight
Both available in RED
Hummer: 0-100 km/hr in 9 seconds
BLAST: GPS *and* Star Navigation

- Circumpolar in 11 days
- BLAST sub-mm sensitivity exceeds that of the Hummer

Cold Re-imaging Optics

BLAST/HERSCHEL SUB-MM SURVEYS

Simultaneous 500, 350, 250 µm imaging

BLAST filters: sensitive to **bolometric flux** colours function of **redshift**

bolometric luminosity (SFR)

0 0

0 0

13' BLAST, 7' SPIRE

JPL

High Altitude Balloons Take BLAST Above 99.5% of the Atmosphere for 11 Days

At 120,000 ft

~400 ft in diameter 28 million cubic feet

Photo: Joe Martz

Photo: Matt Truch

Not a Scratch!

Antarctica

BLAST

Just before Launch

BLAST Flight Path Antarctica 2006

ONE DAY PASSES....

TWO DAYS PASS.....

TWO DAYS PASS.....

BLAST: By the Numbers:

Mass: 2000 kg Mirror Diameter: 1.8 meters Motors: 3 Actuators: 4 Pointing Sensors: 11 Power consumption: 500 W

Computers: 5 Processors: 43 110,000 lines of code Days at float: 12 Colors: 3 (250, 350, 500 microns) Detectors: 260

Altitude: 39 km

Beams: 32, 45, 62 arcseconds

Amount of Data Collected: 120 GB Number of Samples: 24 billion

Number of People to Build and Fly: 25 Total number including analysis: 42 Total Effort: > 2 working lifetimes

Lowest Telescope Temp: -55C Highest Telescope Temp: 50C Cryogens: 35 l Nitrogen 40 l Helium Bolometer temperature: 300 mK

SWAG orders: 5 Mugs, mouse pads, t-shirts, stickers, tattoos

BLAST 2006: 11-day circumpolar flight from McMurdo, Antarctica

BLAST COVERAGE IN GOODS-SOUTH

BLAST COVERAGE IN GOODS-SOUTH

5WIRE (shallow Spitzer): MIPS 24, 70, 160 μm IRAC 3.6, 4.5, 5.8 and 8 μm

ATCA (1.4 GHz, shallow)

/LA (1.4 GHz, deep)

FIDEL (deep Spitzer): MIPS 24, 70 μm

Chandra (1 Ms exposure

GOODS-S (super deep): Spitzer MIPS 24 + IRAC Hubble ACS ESO imaging+spectroscopy KPNO+Subaru Imaging

Hubble UDF South GEMS

A Tour of Some BLAST Sources

z=0.169 IRAS galaxy (IR 03337-2759)
z=1.1 galaxy from the SWIRE survey (J033259.19-274325.3)
z~3 galaxy selected by strong BLAST 500µm emission

2=0.169 IRAS galaxy (IR 03337-2759)

Clear radio detection (ATCA survey) Detected in all Spitzer & IRAS bands BLAST data constrain Rayleigh-Jeans tail

1.1 galaxy (SWIRE J033259.19-274325.3)

Clear radio detection (ATCA Survey) Spitzer 24µm + IRAC, faint at 160 and 70 µm BLAST detects SED *peak*, constrains temperature

3 galaxy selected by strong BLAST 500μm emission

BLAST detects SED *peak*, constrains temperature Expected 850 μm flux density ~20 mJy – a bright SCUBA galaxy?

The BLAST Deep Map is Confused

Hopefully We Are Not!

What do you do with a map that has too many sources to resolve them individually? Why not just add up the flux?

P(D) analysis – looks at the statistics of the signal(noise) to determine the underlying source of the signal

Stacking analysis uses the positions of known sources to extract the flux.

Finding the Source(s) of the Submillimeter Background?

Spitzer 24 micron galaxies in the BLAST field

FIDEL 24 micron Catalog

9118 galaxies

SPITZER IRAC Colors provide redshift bins for the FIDEL Stacking

We can separate the catalogue in sources above and below z > 1.2.

BLAST – Other Results

- Radio and mid-IR identification of BLAST source counterparts in CDFS
- The Far Infrared History of the Universe
- Stacking Results from CDFS
- Clustering Measurements of the Cosmic Far Infrared Background in GOODS
- The 250-micron selected galaxy population in GOODS-S
- Submillimeter galaxy number counts from P(D) analysis of BLAST maps
- Evolution of the FIR Luminosity Function Revealed by new BLAST 250--500um surveys
- Star Formation in the Carina Nebula
- BLAST dust around Eta Carina BS Cassiopeia A
- Resolved Nearby Galaxies
- Dust to mass ratio in the blast resolved galaxies
- Detection of a Submillimeter Galaxy Behind the Bullet
- Abell 3112 Central Source
- Spitzer SEP maps and source lists
- Catalogs of high confidence sources in SEP
- Cold Cores in Vela Nature
- The evolutionary state of the dense cores in Vela-D
- Kappa from extinction with Vela emission
- Ocygnus X
- Galactic Targeted Sources
- IC 5146
- Aquila

SUMMARY

BLAST surveys in GOODS-S and SEP detect > 1000 sources

Source brightnesses span 2 orders-of-magnitude

Detected a mixture of:

z<1 lower-luminosity galaxies (not detected by SCUBA!)
z>1 ultra-luminous "SCUBA" galaxies

Determined the source of the CIB – Spitzer-detected 24 micron galaxies

The BLAST data will be publicly available in 4-6 weeks.

Watch our web page:

http://blastexperiment.info/ http://blastthemovie.com/

Is There a Future for Ballooning in the FIR/Submm?

- Bigger and better mirrors
- Better pointing
- Longer flights at mid-lattitude
- Detectors

Large Diameter Lightweight Mirrors

ACT 2 meter diameter secondary

-Make a 3 meter diameter mirror with <3 micron rms surface. - Weight <350 lbs

- Cost \$300-400K

-Pointing – 2 arcsecond pointing reconstruction has already been achieved.
- On-source pointing is a bit harder – Do you need this for spectroscopy?

-Fast pointing with a positioning secondary could relieve this problem.

-"Conventional" LDB flights – 5000 lbs at 120kft for 40 days
- ULDB flights – 1000 lbs at 120 kft for 100 days (for now!)
- Mid-latitude flights will allow diverse target selection.

It's the DETECTORS, STUPID!

-The detectors for BLAST were <10% of the budget.
- Funded on the coat tails of Herschel.
- Detectors for future instruments ~40% of the budget!
- No mission to ride on.
- Balloon program does not have the budget to support

detector development

So, What Do You End Up With? BEST Balloon-born Extragalactic

Spectrometer Telescope

- Off-axis 3 meter primary

- Cooled to 80K
- -1% emissivity
- 6000 detectors
 - -R = 100-200
 - 60 spatial pixels

- Cover two patches 1 sq. deg. each in a 21 day LDB Flight

