Opportunities for Dust Polarization Surveys

C. Darren Dowell JPL/Caltech

This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA).

Outline

- magnetic fields in interstellar clouds
- observational and theoretical approaches
- dust composition, shape, and alignment
- sensitivity comparison
- survey approaches

Magnetic Field Strengths in Interstellar Clouds

Galactic Field in $A_V \approx 1$ Medium

optical polarimetry

C. D. Dowell, Keck Institute/Dust Polarimetry

Galactic Field in $A_V \approx 10$ Medium

BICEP: southern sky at λ = 2 mm, 1° resolution

Galactic Field in $A_V \approx 100$ Medium

FIR-bright cloud cores: no B angle correlation with Gal. plane

data from Dotson et al. (2000, 2008)

Measuring Magnetic Fields

- In addition to the usual problems with line-of-sight averaging and unresolved structure:
- vector $\mathbf{B} = (B_x, B_y, B_{los})$
 - B_{los}: Zeeman, Faraday rotation
 - $\tan^{-1}(B_y/B_x)$: synchrotron, dust polarization

Measuring Magnetic Fields

- In addition to the usual problems with line-of-sight averaging and unresolved structure:
- vector $\mathbf{B} = (B_x, B_y, B_{los})$
 - B_{los}: Zeeman, Faraday rotation
 - $\tan^{-1}(B_y/B_x)$: synchrotron, dust polarization
 - $-\sqrt{(B_x^2+B_y^2)}$: dust polarization via Chandrasekhar-Fermi approach?

WMAP all-sky synchrotron map

complementarity of synchrotron and dust mapping

Blue: Spitzer 8 μm red: Bolocam/CSO 1.1 mm purple: VLA 20 cm

Bally et al. (2009)

complementarity of synchrotron and dust polarization

Far-IR polarimetry is an excellent tracer of magnetic fields at densities up to 10⁶ cm⁻³.

Tests of Cloud and Core Formation Theory with FIR Polarimetry

- Ordered structures
 - flow along field lines
 - tidal shear
 - swept-up shells
 - accretion disks
- Large features resulting from instabilities
- Dispersion in field
 - Chandrasekhar-Fermi approach

Far-IR polarimetry tests geometrical models of magnetic fields: protostars

"hourglass" field in protostellar envelope

3/11/09

Far-IR polarimetry tests geometrical models of magnetic fields: cloud cores

C. D. Dowell, Keck Institute/Dust Polarimetry

^{16/30}

Far-IR polarimetry tests geometrical models of magnetic fields: cloud formation

Kim & Ostriker (2001)

magneto-Jeans instability

Kim & Ostriker (2006)

C. D. Dowell, Keck Institute/Dust Polarimetry

Magnetic Field Strength from Chandrasekhar-Fermi Method

strong field: small dispersion

weak field: large dispersion

Falceta-Gonçalves, et al. (2008)

- $B = x \rho^{1/2} \Delta v / \Delta \theta$
- x: Ostriker et al.(2001); Padoan et al. (2001); Heitsch et al. (2001); Falceta-Goncalves et al. (2008)

3/11/09

Magnetic Field Strength from Chandrasekhar-Fermi Method

Grain Alignment & Composition

- current theory of grain alignment (Lazarian et al.):
 - Paramagnetic relaxation no longer needed.
 - Instead, radiative torques on asymmetric grains will do.
 - Alignment with polarization perpendicular to field still applies.
- Observational tests possible.

Vaillancourt et al. (2008)

Into the Next Decade

- optical/near-IR: big surveys of starlight polarization
- FIR:
 - BLASTpol: mapping full molecular clouds
 - SOFIA: precision application of Chandrasekhar-Fermi
- submm:
 - Planck: all-sky polarization survey
 - ALMA: great for circumstellar dust?
- radio: EVLA, GBT

HAWCpol/SOFIA

- started Oct. 2008 on JPL internal funds
- permanent upgrade to HAWC
- good for sources up to ~8'

observation bands	53, 89, 155, 216 μm
angular resolution	5 – 22 arcsec
field of view	0.5×1.2 – 1.6×4.3 arcmin ²
polarization modulation technique	quartz half-wave plate, 15 rpm
minimum flux density to achieve $\sigma(P) = 0.2\%$ in 5 hour integration	9, 6, 6, 5 Jy
minimum column density to achieve $\sigma(P) = 0.2\%$ in 5 hour integration	A _V = 1, 2, 5, 4
systematic error goal	δP < 0.2%; δθ < 2°

C. D. Dowell, Keck Institute/Dust Polarimetry

3/11/09

Required Polarization Sensitivity

- typical degree polarization = 3%
- typical intrinsic dispersion = 10° 30°
 >σ(θ) = 3°, σ(P) = 0.3%

➢photometric signal-to-noise of 500

Giant Steps

- MIDEX-class FIR polarization survey
- SAFIR polarimeter
- SPIRIT polarimeter
- EPIC (CMBPol) with extended highfrequency coverage
- SKA

Dedicated Polarization Survey

M4:

0.2 m cold telescope

 PIREX/M4 (Clemens, P.I.; Goodman; Jones)

- satellite proposed to NASA 1990, 1993, 1996
- possible reasons for non-selection:
 - Polarimetry not a scientific priority for NASA.
 - Difficult for a cryogenic mission to compete on the NASA SMEX playing field.
- Unsuccessful Origins Probe proposal to study FIR polarimeter and C⁺ heterodyne spectrometer on 0.5 – 1 m telescope (Dowell, Langer et al.)

27/30

EPIC Polarization Mapping

coverage map, $\sigma(P) \le 0.3\%$

• EPIC/850 GHz can make accurate polarization maps with 10⁸ resolution elements.

Enabling Technologies for Space Far-IR Polarimetry

- polarization-sensitive detectors
- polarization modulation
 - low-power cryogenic rotating quartz half-wave plate
 - scan modulation only (Boomerang \Rightarrow Planck)
- Good polarimeters usually make good cameras.
 NEP = 10⁻¹⁸ W Hz^{-1/2} is adequate for detectors.

Antenna-Coupled 200 μ m TES Detector

- "If nuclear and gravitational forces were the only forces at work in the universe, the broad pattern of cosmic evolution would be one of gradual thermal degradation punctuated by occasional explosive events. The cosmos would resemble the serene and monotonous heavens of classical conception. *There is, however, a cosmic agitator: the magnetic field.* Although only a small part of the available energy in the universe is invested in magnetic fields, they are responsible for most of the continual violent activity of the cosmos, from auroral displays in the earth's atmosphere to stellar flares and X-ray emission, and the massing of clouds of interstellar gas in galaxies."
- E. Parker, Scientific American (1983)