ARCADE: Big, Bad, and Cold

ARCADE

Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission

GSFC

- A. Kogut (PI)
- D. Fixsen
- M. Limon (now at Columbia)
- P. Mirel
- E. Wollack

JPL

- S. Levin
- M. Seiffert

UC Santa Barbara

- P. Lubin
- J. Singal (now at Stanford)

National Institute for Space Research (Brazil)

- T. Villella
- A. Wuensche

A New Look At The First Light

- Precision Photometry at Centimeter Wavelengths
- Cosmological and Astrophysical Backgrounds

Cosmic Microwave Background at cm Wavelengths

Limitations at Low Frequencies

The Atmosphere ...

"Warm" Components ...

Cryogenic Open-Aperture Instrument

Just Get Rid of the Problem!

- Eliminate emission from anything warm
 - Balloon eliminates atmospheric emission
 - Entire instrument isothermal with 2.7 K CMB
 - Open aperture -- No windows!
- Double-Nulled For Your Protection
 - Adjust reference load to null antenna signal
 - Adjust calibrator to null sky signal
 - Measure small differences about null
- Calibrator: Cold and Black
 - Absorption $\epsilon > 0.99997$ across 5 decades
 - Adjust temperature to match sky
 - Read temperature from embedded thermometers

Double-Nulled, Cryogenic, and Isothermal

Stupid Dewar Tricks

Radical thermal design puts 2.7K components outside the dewar!

Payload Schematic

Size Matters

- 1.5 m open aperture
- 1800 l LHe at launch
- 5 m^3/s boiloff gas

- Launch in July 2006
- Palestine, TX
- 4 hours observation at float

Open-Aperture Comparison

CUTER MYLAR

COLD

ABSORBEI

TEFLOI

COLLIM

H+ GA

Open-Aperture Cryogenics

In-flight video camera looks down at dewar

Capture images of 3 GHz antenna 2 hours apart

No nitrogen condensation visible on optics

ARCADA L 11:30-30-00 AM 12/03/06

Pre-flight

Cryogenic Radiometers

Six frequency bands: 3, 5, 8, 10, 30, 90 GHz

Chop between horn and load at 75 Hz

Load functions as transfer standard, but is black enough (ϵ >0.999) for absolute reference

External calibrator (ϵ >0.99997) nulls any remaining instrument asymmetry and provides absolute temperature scale

ARCADE is a thermal experiment, not a radiometric experiment!

External Blackbody Calibrator

Thermal Performance

- LHe tank for thermal isolation
- Temperature controlled near 2.7 K
- 24 embedded thermometers
- Absolute scale verified via Λ transition

Radiometric Performance

- 298 Absorbing cones
- Absorption > 0.99997 with height < λ

Thermal Control in Harsh Environment

Sky-Calibrator Comparison

Successful thermal operations

- Calibrator brackets sky temp
- Instrument nulled to < 0.1 K
- 8 sky/calibrator comparisons per band
- Stable "transfer standard"

Component Temp and RMS Variation (mK)

Frequency	Calibrator	Antenna	Ref Load	Amplifier
3 GHz	2731 ± 134	1486 ± 3	1987 ± 48	1439 ± 3
8 GHz	2710 ± 116	1414 ± 3	1474 ± 3	1440 ± 3
10 GHz	2728 ± 111	1470 ± 3	2840 ± 158	1403 ± 3
30 GHz	2728 ± 111	1635 ± 379	2290 ± 737	1436 ± 3
90 GHz	2724 ± 108	2775 ± 173	2970 ± 349	2961 ± 784

Linear instrument model allows interpolation of sky temperature

Binned Sky Temperatures

Subtract Galactic emission to search for extragalactic residual

Galactic vs Extragalactic Emission

Problem: Can't Use Frequency Dependence to Separate Galactic From Extragalactic Emission

- I. Spatial Morphology
 - Dominant plane-parallel disk
 - Compare radio emission to Galactic latitude
- II. Line Emission
 - Clean tracer of Galactic structure
 - Compare radio to line emission

Look For Extra-Galactic Residual Using Multiple Lines of Sight

Galactic Emission Model

Define Total Galactic Emission in Best Regions Of The Sky

Two Independent Tests

- Plane-Parallel Model
- Radio/Atomic Line Correlation

Three Independent Lines of Sight

- North Polar Cap
- South Polar Cap
- Coldest Northern Patch

Five Independent Sky Surveys

- ARCADE (3, 8, and 10 GHz)
- Surveys at 22, 45, 408, 1420 MHz

Galactic Emission at Polar Caps

Extragalactic Sky Temperature

Extragalactic Sky Temperature

Extragalactic Sky Temperature

Spectral Dependence

Amplitude set by ARCADE data Spectral index set by radio data (any or all)

ARCADE by itself can not determine spectrum of background

Perform identical analysis for full-sky low-frequency radio surveys 22 MHz (Roger et al. 1999) 45 MHz (Maeda et al 1999, Alvarez et al 1997) 408 MHz (Haslam et al. 1981) 1420 MHz (Reich & Reich 1986)

Combined ARCADE + Radio data

T_{CMB}	= 2.729 ± 0.004 K
T _R	= 1.19 ± 0.14 K
β	$= -2.62 \pm 0.04$
χ^2	= 14.5 for 10 DOF

Predicted Radio Background

$$\frac{dN}{dS} = S^{-\gamma} \text{ with } \gamma = 2.11 \pm 0.13$$

Integrated Radio Background

$$T_R = \frac{\lambda^2}{2\pi} \int \frac{dN}{dS} S \, dS$$

Scale observed sources to 3.3 GHz

Predicted: $T_R = 9 \pm 2 \text{ mK}$ Observed: $T_R = 55 \pm 7 \text{ mK}$

Wiggle Room for Radio Sources?

Modification	Workable?	Notes
Source count normalization error	No!	Requires 21 σ error in dN/dS
Extended tail of source distribution	Difficult	10 ⁶ sources amin ⁻² at 100 pJy
New source population	Maybe	1100 sources amin ⁻² at 0.75 μ Jy

Could ARCADE be wrong?

Compare ARCADE to COBE or radio data

- High freq: Preferentially sample cone tips
 ARCADE agrees with COBE
- Low freq: Preferentially sample cone base ARCADE agrees with radio surveys

Data	CMB	Background	
COBE	2.725 ± 0.001		
ARCADE	2.730 ± 0.004	1.13 ± 0.19	
Radio	2.6 ± 0.6	1.5 ± 0.5	

All 3 data sets in mutual agreement

Can't explain background as any single error

Could Galaxy Model Be Wrong?

		Galactic Emission		Extra-Galactic Emission	
Model Technique	Reference Position	Amplitude (K)	Index	Amplitude (K)	Index
C+	NGP	0.49 ± 0.10	-2.53 ± 0.07	0.94 ± 0.14	-2.65 ± 0.04
csc(b)	NGP	0.50 ± 0.03	-2.56 ± 0.04	0.88 ± 0.07	-2.65 ± 0.03
		0.20 . 0.05	2.50 . 0.06	1 12 . 0 09	
C+	SGP	0.30 ± 0.05	-2.59 ± 0.06	1.13 ± 0.08	-2.05 ± 0.02
csc(b)	SGP	0.37 ± 0.03	-2.65 ± 0.05	1.06 ± 0.07	-2.65 ± 0.02
C+	Coldest	0.19 ± 0.13	-2.56 ± 0.12	0.93 ± 0.13	-2.58 ± 0.02
Varies by factor 2.5 Mean 1.00 ± 0.04 K					

from patch to patch $\chi^2 = 6.2$ for 4 DOF

Galactic part agrees between methods, but varies patch to patch Extra-galactic part agrees over both methods and all patches

Wiggle Room For Galactic Halo?

Difficult to produce radio-bright halo

- Background is 2--3 x Galactic brightness NOT a small perturbation on large Galactic signal!
- Requires halo radius large compared to disk Atypical for external galaxies Typically see 10--30% of disk, not 3x disk!
- No change in fit as more lines are added Halo can't contain C, H, or dust (!)

ARCADE Results

ARCADE sky data with excellent calibration & control of systematics ARCADE T_{CMB} consistent with COBE $T_0 = 2.729 \pm 0.004$ K Approaching COBE precision! Improved limits to CMB distortions $\mu < 6 \ge 10^{-5}$ (95% CL)

Y_{ff} < 8 x 10⁻⁵ (95% CL)

Unknown origin for detected background

- New population of faint sources?
- Diffuse background?
- Cosmological origin?

Detection of bright radio background $T_R = 1.06 \pm 0.11 \text{ K}$ $\beta = -2.56 \pm 0.04$ 6x point-source contribution

- Amplitude: ARCADE
- Index: Radio Surveys

Cosmic Radio Background

A Look Into Al's Crystal Ball

The Advantage of Suborbital Missions

150 foot cliff!

Fly payload multiple times to develop thermal design

Sometimes you're lucky

... Sometimes you're not

Importance of Cold Optics

Photon noise from warm optics

- Factor of 3 in NEP
- Factor of 10 in mapping speed

Near-Space Suborbital Capabilities

Primordial Inflation Polarization Explorer

PIPER Balloon Instrument

- 5120 Detectors at 0.1 K
- 1.5 K Open-Aperture Optics
- Phase-Sensitive Modulation
- Survey sky in I, Q, U, V
- 2100, 1100, 850, 500 μm (CMB + dust foregrounds)

First Flight June 2012

- Sensitivity 10 nK rms to CMB polarization
- Detect signal predicted from ~all single-field inflation models

Toward a Cold Future

CMB Polarization ...

The Dusty Universe ...

High-R Spectroscopy ...