

Spitzer Thermal Architecture

M. Lysek

Jet Propulsion Laboratory, California Institute of Technology

(c) 2009 California Institute of Technology. Government sponsorship acknowledged.

Spitzer History

Mechanical Systems Engineering Division

Titan SIRTF

5500 kg

3800 liters LHe M. Werner, 1993 1971-1983 Shuttle-IRTF

1978 Detector development begins

1983 Shuttle mission would be blinded by contamination

1989-1991 Gigantic and expensive Titan version in high earth orbit. JPL staff 50

1991 faster better and cheaper, Titan-SIRTF cancelled

Atlas launched mission in solar orbit

Mechanical Systems Engineering Division

1992 Solar orbit (J. Kwok)

- Lower launch energy than HEO
- Reduced heat input to dewar
- Simpler propulsion system
- Simplified operations, no earth/moon avoidance
- Needs high gain antenna / DSN or optical communication
- Reduced mass: 5700 to 2500 kg
- Shorter lifetime: 60 to 36 months

Still not faster, better or cheaper enough

Delta-launched mission

Mechanical Systems Engineering Division

1993-4 Delta launched mission

- Reduced science requirements
- Simpler instruments: bolt-together, no on-orbit adjustments, minimum mechanisms

Warm-launched design (F. Low)

- Lower mass, smaller vacuum vessel
- Eliminates cold vibration of telescope
- Requires vacuum valve in optical path
- Requires stable alignment between instruments and telescope
- Enabling technology for future missions
- 2.5 year lifetime, 701 kg, \$400M

Phase A Technology Development

Mechanical Systems Engineering Division

Development of instrument/detector technology

- Began in 1978
- Established many design parameters early, including power dissipation

Excellent involvement from science PIs in instrument and mission development

 Science Working Group unchanged over 20+ years

Photos from MIPS website, http://mips.as.arizona.edu/

Phase A Technology Development

Mechanical Systems Engineering Division

- Contamination control studies
- Wide dynamic range porous plug, (D. Petrac, A. Nakano)

Telescope development program

- Light-weight beryllium telescope (HDOS)
- Cryogenic telescope test facility (JPL)
- Proved cryo-figuring of telescope
- Established telescope performance and mass

Phase A Trade Studies

Mechanical Systems Engineering Division

Phase A thermal model

Warm/Warm architecture

- Needs heat switch or fountain pump
- Eliminates aperture door
- Improved alignment stability
- Reduced mass

Combined spacecraft & bus and solar panel

- Reduced heat input
- Expensive, custom spacecraft bus
- Hard to fit into rocket fairing
 Telescope/instrument subassembly testing
- Cost for long wavelength baffling was excessive

Phase B Development

Mechanical Systems Engineering Division

Strong industry partnership

- Well defined thermal interfaces. Ball responsible for full cryogenic performance.
- Contractual incentives for thermal performance

Margin approach

- 2.5 year lifetime with stacked worst case parameters
- Dewar allows trade between heat flow and lifetime
- Recognized thermal performance not testable

Phase B Development

Mechanical Systems Engineering Division

Cryogenic design

- Ball, Lockheed & JPL refine thermal design
- Low-e surface emissivity measurements
- Detailed design of all components
- Thermal/mechanical stability

Changes

- Increased dewar volume to 360 l
- Star tracker moved beside SC bus
- Eliminated radiators on SC shield and top of SP shield
- Eliminated heat switch between the outer shell and telescope baffle
- Solar panel supported by SC only
- Predicted nominal 4.9 year lifetime, 35K outer shell temperature

Phase C/D Development

- Detailed thermal model SINDA/TSS
- Study of "BIRB" black paint emissivity at low temperature (GSFC)
- Detailed design and test of gammaalumina struts
- Ventline study, nozzle characterization
 & alignment
- Wide dynamic range porous plug detailed design. TAO study
- Pointing reference sensor development (Lockheed)
- Study use of make-up heater to control telescope temperature

Phase C/D Development

Verification and Validation

- Scale model testing abandoned early
- Helium shroud testing considered during phase B
- Brutus test with outer shell cooled to verify optics and detectors (except MIPS)
 - Significant unexplained stray heat loads to telescope and dewar
- Observatory level test in 77K shroud
 - Only verified warmest shields
- No verification of last layer of thermal shields around observatory
- Test data plus worst-case modeling predicted 2.5 year lifetime

Flight Performance

Mechanical Systems Engineering Division

Thermal performance close to prediction

- SP shield 25K high
- Parasitic heat flow < 1mW
- Mass gauging predicted 60+ month lifetime

Anomalies and problems

- Radiation coupling to black strip on solar panel shield radiator edge
- 1 cryo-ribbon cable/connector failure out of 140 before launch
- Spare primary mirror damaged during build.

- About 20 years of science and mission concept development before phase A
- Faster, better, cheaper approach forced Spitzer to simplified instruments, solar orbit and warm-launch architecture
- Large lifetime margin permitted launch with limited verification of thermal performance
- Spitzer had a well-funded technology development program (\$65M RY Phase A-B) yet still had considerable technical and financial problems during implementation
 - Early technology development reduced overall mission cost
 - Competed missions with significant technology development during implementation will not easily maintain schedule or control costs
 - Internal R&D funding is insufficient to develop mission-specific technologies for smaller missions