

First steps taken by Voyager ...

(ALEXANDRA WITZE) Nature 497, 424-427 (23 May 2013); doi:10.1038/497424a

What are the next steps?

Voyager

- Took 36 years to reach the ISM
- Escape velocity (V_∞) is 3.6 (AU/year)
 - using gravity assists: Jupiter, Saturn, Uranus, Neptune
- 37 years old and going

Mission Capability Goals

1. Get there sooner: 100+ AU in 10 years

2. Travel faster : 5x – 10x Voyager speed

3. Survivability : 50-100 years

In Principle

- It is not possible to achieve required V_{∞} using direct launch
 - → We need gravity assists, carry propulsion, etc.
- It is better to burn (propellant) when going fast:
 - → ΔV more efficient when moving faster (e.g. near Sun): Oberth Effect
- High launch energy needed to get close to the Sun
 - use Jupiter to get to the Sun
- Lower spacecraft mass means higher V∞
 - → The less massive the ISM probe, the faster it will go

3 Mission Phases

Launch Phase (1)

- SLS performance launch from Earth with high energy
- Solid rocket kick stage to further increase launch energy
 - Solar probe plus
 - Voyager 1, 2

Speedup Phase (2)

- Plunge towards the Sun to increase s/c speed
- Use Jupiter to achieve low solar perihelion
- Utilize inner solar system to gain speed (gravity assists)

Escape Phase (3)

- Increase speed
- Gravity assist
- Probe propulsion
 - Electric Propulsion
 - Solar Sails

3 Mission Scenarios to illustrate the architectural framework

A. Simple approach

B. More complex

C. Ambitious and challenging

Mission Scenario - A

- SLS performance launch from Earth to Jupiter
- ΔV at close approach to Jupiter
- Separate, optional propulsion escape after Jupiter flyby

Option	Launch energy (C3, km²/s²)	Injected mass (Ton)	Gravity assist bodies	ISM Probe propulsion options	Closest approach to the Sun (AU)	Max V ∞ for 75 kg science payload (AU/Year)	Max Distance in 10 years (AU)
Α	95	10.3	Jupiter	Optional EP	1	10	65

Flight System Model - A

Mission Scenario - B

- SLS performance launch from Earth to Venus
- ΔV at close approach to
 Sun ~ 32-70 solar radii
- 3. Separate, optional propulsive escape with Jupiter flyby

Option	Launch energy (C3, km²/s²)	Injected mass (Ton)	Gravity assist bodies	ISM Probe propulsion options	Closest approach to the Sun (AU)	Max V ∞for 75 kg science payload (AU/Year)	Max Distance in 10 years (AU)
В	240-90	0.9 – 10.7 (optimized)	Jupiter	Solar Sail, EP + Solar sail	0.14-0.35	11	92

Flight System Model - B

Scientific

Mission Scenario - C

- 1. SLS performance launch from Earth to Jupiter
- 2.a Jupiter gravity assist to bend spacecraft towards the Sun
- 2.b ΔV at close approach to the Sun ~ 3-20 solar radii
- 3. Separate, optional propulsive escape with optional Saturn flyby

Option	Launch energy (C3, km²/s²)	Injected mass (Ton)	Gravity assist bodies	ISM Probe propulsion options	Closest approach to the Sun (AU)	Max V _∞ for 75 kg science payload (AU/Year)	Max Distance in 10 years (AU)
С	116	7.3	Jupiter, Saturn	Solid, EP, Solar sail	0.015 -0.1	16	108

Flight System Model - C

Preliminary Results

Option	Launch energy (C3, km²/s²)	Injected mass (Ton)	Gravity assist bodies	ISM Probe propulsio n options	Closest approach to the Sun (AU, [Solar Radii])	Max V _∞ for 75 kg science payload (AU/Year, [km/s])	Max Distance in 10 years (AU)
Α	95	10.3	Jupiter	None, EP	1, [215]	10, [47]	65
В	240-90	0.9 – 10.7 (optimized)	Jupiter	Sail, EP + sail	0.15-0.33, [32- 70]	11, [52]	92
С	116	7.3	Jupiter, Saturn	None, EP, Sail, EP + Sail	0.014 -0.1 [3-20]	16, [76]	108

Summary Trajectory Performance 75 – 30 kg Science Payload

Lower marker on a line = 75 kg science payload Upper marker on a line = 30 kg science payload

In Summary

Whereas it is technologically challenging, it is conceivable that a mission in the next 10-20 years, can be designed and launched using the SLS to carry a science payload of at least 75 kg to:

- Reach the ISM in 10 years
- Travel at 15 AU/year into the ISM
- Last over 50 years to reach 700 800 AU

Probe Propulsion Assumptions

Electric Propulsion

- Large ΔV's over long flight times
- Two options:

• <u>MEP</u>

- Very high ISP (~6000s), very low thrust > 1 mN
- Low power per unit ~ 7w
- Very light weight > 100 grams (per unit + PPU)
- Very short life ~ 6 months (optimistic), low TRL

MaSMi

- Magnetically shielded → very long lifetime
- ISP ~ 1870s, anode efficiency ~ 56%
- Light weight ~ 20 kg (complete system with PPU)
- ~390w system input power

Solar Sails

- Spin stabilized, disc shaped, e.g. Znamya sail, HelioGyro
- Assume 5 g/m² sail specific weight of sail + support structure (applied on CBE) → used for sizing the sail
- Spacecraft sail loading (A/M) = 40 110 (m²/g) → used for computing sail acceleration
- 30 % cont. for solar sail mass; no additional system margin

Previous Work

- 1. R. L. McNutt Jr., R. F. Wimmer-Schweingruber, the International Interstellar Probe Team, "Enabling interstellar probe", Acta Astronautica, Volume 68, Issues 7–8, April–May 2011.
- 2. R. F. Wimmer-Scweingruber, R. McNutt, N. A. Schwadron, R. C. Frisch, M. Gruntman, P. Wurz, E. Valtonen, and the IHP/HEX Team., "Interstellar Heliospheric Probe/Heliospheric Boundary Explorer Mission—a Mission to the Outermost Boundaries of the Solar System", Experimental Astronomy, Vol. 24, Issue 1-3, May 2009.
- 3. R.L. McNutt Jr., G.B. Andrews, J. McAdams, R.E. Gold, A. Santo, D. Oursler, K. Heeres, M. Fraeman, B. Williams, "Low-cost interstellar probe", Acta Astronautica, Volume 52, Issues 2–6, January–March 2003.
- 4. R.A Wallace; J.A Ayon; G.A Sprague, "Interstellar Probe mission/system concept", Aerospace Conference Proceedings, 2000 IEEE, vol. 7, 2000.
- 5. R.A. Mewaldt, J. Kangas, S.J. Kerridge, M. Neugebauer, "A small interstellar probe to the heliospheric boundary and interstellar space", Acta Astronautica, Volume 35, Supplement 1, 1995.