

Mar 1, 2008 4:50 pm

Overview of the Surface and Atmosphere of Mars: Challenges and Opportunities

David Kass

Jet Propulsion Laboratory, California Institute of Technology

June 28, 2016

Mars

Keck Institute for Space Studies

ISRU – Short Course

- Mars is a terrestrial planet with a thin atmosphere
 - This is the same "general" classification as the Earth.
 - There are both similarities and differences

Mars' Seasons

Keck Institute for Space Studies

ISRU – Short Course

- Mars Years (MY)
 - Mars years last 668.6 sols (sol = Mars day = 24.62 hours)
- Mars' orbit is significantly more elliptical than the earth (e = 0.09)
 - Insolation changes by 45% over the Mars year
 - Use Ls (Heliocentric Longitude) to designate season during the year
- Mars has axial tilt of 25.19°
 - Very similar to the terrestrial tilt (23.4°)
- Mars has four seasons
 - Northern Spring (starts at $Ls = 0^{\circ}$)
 - Start of Mars Year (MY)
 - Generally relatively little dust => cold and cloudy during the season
 - Northern Summer (starts at $Ls = 90^{\circ}$)
 - Remains cold and cloudy
 - Relatively little dust, but it starts to increase towards the end of the season
 - Southern Spring (or Northern Autumn, starts at Ls = 180°)
 - General increase in the amount of dust in the atmosphere
 - Warmer atmosphere and continued warming during the season
 - Perihelion near end of season (Ls 251°)
 - Southern Summer (or Northern Winter, starts at $Ls = 270^{\circ}$)
 - Continued significant amounts of dust and a generally warm atmosphere

Global Temperature Structure

Polar Caps and Frost

ISRU – Short Course

Black = edge of CO_2 polar cap

 $Red = CO_2$ snowfall

White = CO_2 snow drifts

VL2 Frost (water ice)

CO₂ frost also detected at night in the tropics

Annual Pressure Cycle

Keck Institute for Space Studies

ISRU – Short Course

Mean surface pressure: ~ 610 Pa

- No sea level to use as reference
 - Use mean equatorial surface

Extreme topography on Mars

- − ~28 km total elevation variation
- Scale height ∼11 km
- Surface pressure varies by factor of
 13 due to altitude

Surface pressure varies seasonally

- Growth & retreat of seasonal CO₂ polar caps
- Two annual minima
 - One for each polar cap

Strong dust storm influence

- Mean pressure variations
- Diurnal pressure variations

Near Surface Diurnal Cycle

Keck Institute for Space Studies

Martian near-surface atmosphere undergoes large diurnal cycles

- Variations of surface pressure ~10%
- Variations in surface temperature ~ 100 K
- Strong location and seasonal dependence

Local and regional topography has major role in near-surface and boundary layer

- Thin atmosphere + strong surface heating
- Deep and vigorous convective layer
- Very strong katabatic flows
 - Affect winds and temperatures
- Modulates global thermal tides
- Significant variations in surface pressure

Atmospheric Composition

NASA

Keck Institute for Space Studies

ISRU – Short Course

Gaseous Species	Average Abundance
CO ₂	0.960
Ar	0.0193
N_2	0.0189
O_2	0.0014
СО	800 ppm
H_2O	15–1500 ppm
H_2	15 ppm
Ne	2.5 ppm
Kr	0.3 ppm
Xe	0.08 ppm
O_3	10–350 ppb
H_2O_2	10–40 ppb
CH ₄	0.7–7 ppb

Isotope Ratio	Value with respect to terrestrial value
¹³ C/ ¹² C	1.046 ± 0.004
¹⁷ O/ ¹⁶ O	1.024 ± 0.005
¹⁸ O/ ¹⁶ O	1.048 ± 0.005
$^{15}N/^{14}N$	1.6 ± 0.2
38 Ar/ 36 Ar	1.26 ± 0.03
40 Ar/ 36 Ar	6.4 ± 1.0
¹²⁹ Xe/ ¹³² Xe	~2.5
D/H	5.5 ± 1.0

Water vapor is highly variable with season and location

CO₂ varies with season due to polar cap condensation

Dust

Keck Institute for Space Studies

ISRU – Short Course

- Dust and dust storms are key drivers of Martian weather and climate
 - Dust in atmosphere absorbs sunlight and heats it
 - Very efficient at heating the atmosphere
 - There can be positive feedback cycles with the dust
 - Atmospheric heating increases the wind speed
 - Higher wind speeds increase amount of dust lifted
- Dust is a fine grained, light toned component of the soil
 - Composition similar to basaltic Martian soil, but enriched in S, Cl and Fe

- Effective radius is $\sim 1.5 \mu m$
- Modified gamma distribution

Background amount of dust varies over the MY

- Affects the overall temperature structure
 - More dust -> warmer atmosphere
- Depth of background dust haze varies seasonally and regionally
 - Up to ~40 km around perihelion
 - Frequently see dust layers at 20 km to 30 km

DMK-9

Dust Storms

Keck Institute for Space Studies

- Dust storms range from local to global
 - Local: last 1 to 3 sols
 - Large effect on atmosphere in lowest ~10 km
 - Regional: 3 sols to few weeks
 - Can leave dust hazes persisting for several weeks
 - Large Regional/Planet Encircling:
 - Affect hemisphere for ~1 month
 - Thermal effects in regions with little or no dust
 - Global:
 - Affect entire atmosphere for 1 to 3 months
 - Large & global changes in the thermal state
 - Density changes can exceed ×20 in places

- Dust storms are a regular occurrence
 - Occur in all seasons
 - Largest storms usually during southern spring and summer
 - Local and regional storms have "storm" tracks they follow
 - > Probability of local & regional storms varies strongly with location
 - Storms (esp. large ones) also perturb the surface pressure

Solar Array Performance

Keck Institute for Space Studies

ISRU – Short Course

MER A (Spirit) 14.6° S

06/28/2016

3 1/3 Mars years of MER solar array performance

MER B (Opportunity) 2° S

Sol

Locations on Mars

Keck Institute for Space Studies

ISRU – Short Course

Topography and Terrain

Keck Institute for Space Studies ISRU – Short Course 3 Ages: Noachian (ancient) Hesperian Amazonian ("recent")

Surface composition is dominated by weathered basalt, when not covered in dust

Views of the Surface of Mars

Global Surface Properties

DMK-15 06/28/2016

Sub-Surface Water Ice

GRS Hydrogen detection (color map)—blue: high; red: none Craters: white: icy; black: non-icy; cyan: possible

Summary of Aqueous Mineral Distribution

NASA

Keck Institute for Space Studies

ISRU – Short Course

Questions?

