Planetary environments where non-aqueous liquids may be present

C. Sotin, JPL-Caltech

Planetary environments where non-aqueous liquids may be present

Is there life where there is water? The 'follow the water' model

Paradigm change: 'Don't follow (just)

the water: Does life occur in non-

aqueous media?'

Introduction
(P,T) conditions for liquids to be stable
What liquids?

What (exo) planets or satellites?

Conclusion

H₂O on Earth

Oceans: $1.35 \ 10^{21} \ \text{kg}$

Ice: $2.5 \ 10^{19} \ \text{kg}$

Underground water:

around 0.25 10²¹ kg

H₂O in the mantle:

 $0.05\% * 4 10^{24} \text{kg} = 2 10^{21} \text{kg}$

 H_2O is about 2.5 to 5 $10^{-4} M_T$

One issue is whether water comes from comets or from outgassing (volcanism)

Examples of water worlds

Temperature (K)

H₂O on Earth

CH₄ on Titan

Atmosphere: 1.9 10¹⁷ kg

Seas: $2.5 \ 10^{16} \ \text{kg}$

Underground methane: ??

Methane is at least 2x10⁻⁶ M_{Titan}

Triple point is at low temperature and high pressure (5.2-bar). Venus' surface temperature is well above the critical point – However, exoplanets may have the right surface conditions

7

(from Gaillard and Scaillet, 2014)

The higher the pressure, the larger the fraction of CO2 in the outgassing (Gaillard and Scaillet, 2014, Antheoretical framework for volcanic degassing chemistry in a comparative planetology perspective and implications for planetary atmospheres)

	Triple point		Critical point	
	P (Pa)	T (K)	P (Pa)	T (K)
CH_4	11,700	90.7	4,600,000	190.6
H_2O	612	273.2	22,064,000	647.1
CO_2	517,950	216.6	7,377,298	304.1

	P (MPa)	T
Titan	0.147	92
Earth	0.1	275
Venus	9.3	723

Other fluids – N2

Other fluids – NH₃

Temperature (K)

Planetary environments with liquids

such as CO2, N2, NH3

Other planetary systems may harbor planets with other liquids

Summary and Conclusions

- 1. Liquids are confined in a small (P,T) range.
- 2. Although the case for H₂O is well documented on Earth, the origin (fraction from cometary impacts/outgassing) is still debated.
- 3. The preservation of liquid over geological timescales required for life to emerge and develop may require recycling between the interior and the surface.
- 4. Solar system exploration has revealed the presence of liquid H₂O, liquid hydrocarbons, and supercritical CO₂.
- 5. Other liquids such as liquid CO₂, liquid N₂, and liquid NH₃ may exist on exoplanets.
- 6. The case for liquid CO₂ has been supported by recent laboratory experiments