Impacts

KISS Workshop 7/23/13 Brendan Hermalyn

University of Hawaii, Honolulu, HI

Artificial Lunar Impacts

	V (km/s)	Mass (kg)	Angle	Crater Size
Ranger 7	2.62	365.6	64°	14
Ranger 8	2.65	369.7	42°	13x14
Ranger 9	2.67	369.7	_	16
Apollo 13	2.58	13925	76°	41
Apollo 14	2.54	14916	69°	39
LCROSS	2.5	2200	>85°	25
Grail	1.6	200	~2°	5

Baldwin (1967), Moore (1968,1971), Whitaker (1971)

Overview:

• Why use impacts?

- New experimental methods and data enabling novel missions
- Why we care:
 - Cratering as a sensing tool

Examination of Subsurface Spectrometers?

- Limited depth (~70cm) and resolving abilities (is it water or H?)
- Lander?
 - Expensive
 - Difficult to land and excavate on small bodies
 - Excavator depth is limited
 - Unknown surface properties can negate methodology

• Impactor?

- Allows examination of subsurface and material properties (what's down there? Grain size? Etc.,)
- Excellent for initial survey
- Cheap

DI: \$330M LCROSS: \$79M <\$.1M-\$10sM

NASA Ames Vertical Gun Range

Impact Relevance

• Ejecta:

- Where does it go?
- Where does it come from?
- Volatile Release:
 - Heating during impact
 - Heating in sunlight
 - Ejecta return scouring and heating

• What can the ejecta tell you about the subsurface?

- Strength
- Density
- Homogeneity/Layering
- Materials
- Etc.

• How can a small impacts guide future investigations? (ISRU, excavator design)

Main-stage Scaling (vertical impacts)

Position: $\frac{v_e}{\sqrt{qR}} = k_n \left(\frac{x}{R}\right)^{-1/\gamma}$ Time: $\frac{v_e}{\sqrt{gR_c}} = k_1 \left(t_{launch} \sqrt{\frac{g}{R_c}} \right)^{(\alpha-3)/(\alpha+3)}$

Relies on Coupling Parameter:

 $C = a V_i^{\mu} \delta^{\nu} \left(\frac{\delta_p^{\nu} V_i^{\mu}}{\delta_i^{\nu} c^{\mu}} \right)$

Housen, et al 1983]

Planned Impacts

Standard

Impact Mission

Solid Spheres / flyer plates

5 km/s and up

Sand or Solid Material

Shock Heating 20-70 degrees Hollow, Low-density, Irregular Shape

2.5 km/s

? Unconsolidated, <u>comp</u>ressible regolith

Low Peak Pressure Almost vertical (90 degrees) to grazing

Impact-induced energy partitioning, melting, and vaporization on terrestrial planets

Okeefe, J. D. & Ahrens, T. J. 1977

Schultz 1996

LCROSS IR Camera

Hypothetical Case: Cubesat Mission

2.5km/s
1.3kg
10cm³
Into the moon

How Much?

From Hermalyn and Schultz, 2012

From Where?

