

Lunar Hydrogen Sequestration towards Poleward facing slopes

Lunar Ice Detection Workshop
California Institute of Technology
Pasadena CA

July 22 - 25, 2013

Tim McClanahan
The LEND Team

Outline:

- 1. LEND SP Videos and New SP Map
- 2. Hydration Effects in Mid-Latitudes M³
- 3. Comparative Planetology: Insolation and H Volatiles
 - Latitude and Topography
 - Insolation Model from slope
- 4. Multi-scale analysis: Altitude, Scale and SNR

Factors: LPNS (30km) Uncollimated LEND (50km)

- SETN UnCollimated, SP vs NP
- CSETN Collimated
- 5. Mid-Latitude Pole-Facing Slope Hydration
- 6. Conclusions

LEND South Pole Coverage

Goddard Science and Visualization Studio

LEND: -82 to -90

July 2, 2009 To July 17, 2014

LPNS* SP Low Altitude

CSETN SP

LPNS* SP Low Altitude

CSETN SP Blurred (40km FWHM)

Detailed Modeling of LEND: 2 Papers Updated Calibration techniques: 1 paper, Science papers 2 Stay tuned!

Insolation and Surface Hydration

Pieters et al, 2010, Mid-latitude Crater slopes, M^3 3- μ m Li et al., LPSC 2013, H increases as F(Latitude) > $\pm 60^{\circ}$

Insolation and "Extended Polar Suppression of Epithermal Neutrons"

Illumination / Thermodynamic Effects on Hydrogen in Cratered Topography

Hypothesis: Epithermal Rates in:

- 1. Pole Facing < Equator Facing
- 2. East Facing = West Facing
- 3. High Slope Contrast > Low Slopes
- 4. North = South

Mars CRISM: Thin water frosts on poleward-facing slopes.

Indirect FOV comparison
 LowRes FOV: CT ~linear curve
 HiRes FOV: CT sharper curve

LOLA DEM Insolation Processing Methods:

1. Transform Topo to Insolation model, I (average)

Slope Azimuth Φ to pole

- Scale Invariant Transform

2. High Pass Filter Epi Maps Removes EPSEN

Map

Smooth

Map-Smooth

LOLA SP Illumination to Insolation Model: I(Φ,θ)

Average Flux (Cos weighted)

Slope Azimuth Φ

0

Pole F

Slope Azimuth Φ

8

0

Pole F

Equator F

Insolation Epi-Rate Maps: CSETN vs Illumination, ±75:90

- Insolation Pattern: Epithermal rates suppressed on PF slopes vs EF

Insolation Epi-Rate Maps, UNCOL: LPNS and SETN, ±75:90

- FOV's: LEND SETN (50km) vs LPNS (30km), Collim CSETN?
- Improve SNR: Mask out small scale features

Improve Signal to Noise Ratio: Systematically mask Off hi to low spatial freq pixels.

Mid-Latitude Insolation Model Analysis

- At what latitudes does hydration start?
- LPNS and CSETN Detectors
 Epithermal Maps, <u>No Masks</u>
- North and South
- Each 10° Latitude window
 Reaverage Epi Maps into
 Insolation Model, I(θ,Φ)
- Shift window ±50° to ±85° in
 - 5° increments.
 - 6 maps produced

Conclusions:

- SP CSETN Maps are high resolution and consistent.

 Blurred CSETN → LPNS
- Suggests H distributions correlated to the continuum of insolation. (Possible contribution: diurnal temperature variation: EF slopes)
- Lats < ±65°: NO definitive insolation pattern, CSETN, LPNS
- Persistent diurnally stable hydration line ~ ±65° to ±70°
- Lats > ±65°: Correlated insolation patterns: PF higher H vs. EF slopes.
- PSR% Area ± 65 to 70° = $\sim 0.1\%$, Not a likely factor in epi suppression Suggests effects from low end of insolation continuum

Conclusions Continued:

- Insolation Pattern: ~ Uniform effect suggests H → Solar wind source.
- Insolation patterns: Consistent polewise comparisons
- EPSEN suppression > ±70°:
 - * Polewise symmetric, LPNS and LEND ~4%
 - * H is enhancement /trapping related to locally low distributions of insolation and H increases towards poles.
 - * H cold traps occur in a continuum of spatial scales (diffusion)
 Most traps <<< scale of LEND and LPNS resolutions (blurred)
- LEND CSETN upwards curved impulse response plots suggests a higher resolution FOV than the Uncollimated (LPNS and SETN)

LEND CSETN Diurnal Hydration

SETN observes this too!

Livengood et al., 2012 Lunar Volatiles Conference

CSETN Diurnal Hydration

LPNS* SP Low Altitude

CSETN SP Blurred (40km FWHM)

Detailed Modeling of LEND: 2 Papers Updated Calibration techniques: 1 paper Stay tuned! **Epithermal Reference Rates: ER**

LEND CSETN: 1.7 cps Mitrofanov et al., 2010

LEND SETN: 9.5 cps Inspection

LPNS: 19.5 cps Inspection

LPNS*: 18.5 cps Inspection

*Epithermal Map correction 6.8% thermal, Maurice et al. 2004

Band Mean: A = Mean(Azimuth-band)

Band Std Dev = A_sd Std(Azimuth-band)

N = number of pixels in band

Water Equivalent Hydrogen

WEH = 1.91*((ER/(ER+A))-1.)

WEH_SEM = $1.91*((ER/(ER+A_sd))-1.)$

WEH_SEM = WEH_SEM / sqrt(N)

WEH to PPM

PPM = (WEH * ((1.e6)/900.)) PPM_SEM = (WEH_SEM * ((1.e6)/900.))

Method: Mitrofanov et al, 2010