ICE IN THE FAR-IR & DIVINER³

Far-IR Subteam: Ben Greenhagen, Christopher Edwards, Dan McCleese

Additional Contributions: Tim Schofield & Paul Hayne

WHY FAR IR?

- ~45µm fundamental ice feature (e.g. Moore & Hudson, 1992)
 - Large body of literature for water ice and other materials related to icy moons
 - Also shorter wavelength features but may be confused with silicate bands
- Passive spectroscopy technique
 - No illumination source needed for permanently shadowed regions (20-120 K surfaces)
- Ability to estimate areal fraction of exposed ice based on spatial mixtures
 - Likely looking at macro-scale (>250-1000m) ice deposits (Paige et al., 2010; Morgan & Shemansky, 1991)
 - Can't say anything about sub-surface ice or equatorial OH mobility

WHAT DOES THIS TECHNIQUE ANSWER?

- Extent of areal mapping the ~45µm infrared ice feature
- \sim 45 µm absorption feature is still present (varies to longer λ with decreasing crystallinity) if:
 - Deposited at various Ts (40-160K)
 - Deposited at low T (14K) and warmed
 - Deposited at high (160K) and cooled

Ice Deposited at Indicated Temperatures

Emissivity 40KEmissivity 80K

— Emissivity 100K

— Emissivity 120K

Emissivity 140K

Ice Deposited at 14K and Warmed (Amorphous)

Ice Deposited at 160K and Cooled (Crystalline)

WHAT DOES THIS TECHNIQUE ANSWER?

- Extent of areal mapping the ~45µm infrared ice feature
- \sim 45 µm absorption feature is still present (varies to longer λ with decreasing crystallinity) if:
 - Deposited at various Ts (40-160K)
 - Deposited at low T (14K) and warmed
 - Deposited at high (160K) and cooled
- Also significant particle size effects

PARTICLE SIZE EFFECTS

WHAT DOES THIS TECHNIQUE ANSWER?

- Extent of areal mapping the ~45µm infrared ice feature
- ~45 μm absorption feature is still present (varies to longer λ with decreasing crystallinity) if:
 - Deposited at various Ts (40-160K)
 - Deposited at low T (14K) and warmed
 - Deposited at high (160K) and cooled
- Also significant particle size effects
- Fortunately most silicate absorption bands are <40 microns but there is some overlap
 - Mitigate with differential observations of warm areas

FIR SPECTRA OF LUNAR SOILS

SUMMARY OF FIR ICE

- Compounding effects of particle size and crystallinity
- Can we send a FIR instrument now?
- Still need to know:
 - What is the form of the ice? (crystalline/amorphous, thin coating, slab, etc.)
 - System performance (next slides)
- Lab studies of ice are necessary for both FIR/NIR to really answer these questions
 - JPL facilities exist to begin to answer these questions to a level where we can be confident of a mission designed to map these features

DIVINER³ (DIVINER-CUBED)

- Is there a simple, very low cost (\$1-5M) cubesat concept that could leverage our knowledge of water ice in the FIR to answer (or significantly constrain) a fundamental question?
- Mars Climate Sounder (MCS) and the Diviner Lunar Radiometer offer a high heritage foundation for the development of a low cost, highly capable instrument
 - Some flight spare components available (e.g. detectors, filters)
 - Build-to-print for other components (e.g. focal plane arrays, optics)
 - Phase A-D costs for MCS and Diviner \$M 20ish

DIVINER³: A HIGHLY CAPABLE INSTRUMENT

1 month of Diviner data collected at summer solstice

DIVINER³ ACCOMMODATION

- Telescope is small enough to fit in a single 1U structure
- Electronics would need to be collocated with cubesat avionics to fit within 3U cube
- Use Diviner ch. 7 & 8 (26-41 μm & 50-100 μm) filters and procure a single new filter on FIR water ice band

DIVINER³ PERFORMANCE MODEL

DIVINER³ PERFORMANCE MODEL

DIVINER³ PERFORMANCE MODEL

DIVINER3 NEW PASSBAND OPTIMIZATION

DIVINER³ CALIBRATIONS

Other schemes involve pitching spacecraft to point at N pole and/or mid-latitudes

FIR & DIVINER³ CONCLUSIONS

- There are diagnostic water-ice spectral bands in the FIR that could be used to detect the presence of and constrain the grain size and crystallinity of water-ice
- Diviner³ could fit the role of a very low cost, highly capable instrument
- Other concepts may be even more capable albeit at higher cost/complexity
- What is the value of a very low cost mission that addresses a specific question vs. a larger concept?
- This KISS Study needs to decide if it's better to advance the study of lunar volatiles by significantly advancing a single low cost concept, advancing several low cost concepts, improving the technical foundations of a variety of techniques, or promoting a larger concept