



CALIFORNIA INSTITUTE OF TECHNOLOG

## Uses of a Microwave Spectrometer for a small lunar impactor mission



Matt Siegler (JPL) Thanks to Sam Gulkis, Imran Mehdi, Andy Ingeroll



## **Concept for a ride along instrument in impact chaser or orbiter**

# The MIRO instrument on Rosetta(7 arcmin FWHMcan examine water isotopesfield of view)

• Main 3 water isotopes can be differentiated in vapor

It can see in the dark

### **Species visible with MIRO spectrometer**

| Species            | Frequency (MHz) | Transition      |
|--------------------|-----------------|-----------------|
| Water              |                 |                 |
| $H_2^{16}O$        | 556936.002      | 1(1,0)-1(0,1)   |
| $H_2^{17}O$        | 552020.960      | 1(1,0)-1(0,1)   |
| $H_2^{18}O$        | 547676.440      | 1(1,0)-1(0,1)   |
| Carbon monoxide    |                 |                 |
| CO                 | 576267.9305     | J(5-4)          |
| Ammonia            |                 |                 |
| NH <sub>3</sub>    | 572498.3784     | J(1-0)          |
| Methanol           |                 |                 |
| CH <sub>3</sub> OH | 553146.296      | 8(1)-7(0) E     |
| CH <sub>3</sub> OH | 568566.054      | 3(-2)-2(-1) E   |
| CH <sub>3</sub> OH | 579151.005      | 12(-1)-11(-1) E |



# The MIRO instrument on Rosetta(7 arcmin FWHMcan examine water isotopesfield of view)

• Main 3 water isotopes can be differentiated in vapor

• It can see in the dark

• Can see 10<sup>12</sup> Molecules/cm<sup>2</sup>/sec

#### **MIRO** spectrometer specification

|                                  | Millimeter      | Submillimeter      |
|----------------------------------|-----------------|--------------------|
| Telescope                        |                 |                    |
| Diameter                         | 30 cm           | 30 cm              |
| Beam-Size (FWHM)                 | 22 arc min      | 7 arc min          |
| Foot-Print (2 km nadir distance) | 15 m            | 5 m                |
| Spectral Characteristics         |                 |                    |
| Frequency                        | 188.5-191.5 GHz | 547.5-580.5 GHz    |
| IF Bandwidth 1-1.5 GHz           |                 | 5.5-16.5 GHz       |
| Spectral Resolution              |                 | 44 kHz (.023 km/s) |
| Individual spectral bandwidth    |                 | 20 MHz (11 km/s)   |
| Spectral Bandwidth/No. Channels  |                 | 180 MHz/4096       |
| Radiometric Characteristics      |                 |                    |
| DSB Noise Temp.                  | 1000K           | 5000K              |
| RMS Spectroscopic Senstivity     |                 | 2K                 |
| (300 kHz, 2 min.)                |                 |                    |
| RMS Continuum Sensitivity(1 sec) | < 1 K           | < 1 K              |
| Data Collection Rate             | 0.23 - 2.53 kbp | S                  |

## Par and the

## The minimum detectable water signature is 10<sup>7</sup> times more sensitive than LCROSS visible plume requires





## Microwave spectrometers have been developed for CubeSats (MIT's MicroMAS shown here) (2.5° FOV\*)





MicroMAS has 8 channel "spectrometer" 115-119 GHz- Launches Dec 8



## This observation would not require illumination (and plume is much denser near the surface)



...which is especially important if impactor is too small to make a visible plume.

- Could be implemented as a separate CubeSat or as impact chaser.

#### The MIRO instrument on Rosetta (7 arcMin FWHM can examine water isotopes field of view)

**Species visible with MIRO spectrometer** Near surface dielectric constant (with cross polarization) Near surface thermal gradient Very low temperatures at high precision (extending Diviner's temperature range) **Development** of arrays underway at JPL

| Species            | Frequency (MHz) | Transition      |
|--------------------|-----------------|-----------------|
| Water              |                 |                 |
| $H_2^{16}O$        | 556936.002      | 1(1,0)-1(0,1)   |
| $H_2^{17}O$        | 552020.960      | 1(1,0)-1(0,1)   |
| $H_2^{18}O$        | 547676.440      | 1(1,0)-1(0,1)   |
| Carbon monoxide    |                 |                 |
| CO                 | 576267.9305     | J(5-4)          |
| Ammonia            |                 |                 |
| NH <sub>3</sub>    | 572498.3784     | J(1-0)          |
| Methanol           |                 |                 |
| CH <sub>3</sub> OH | 553146.296      | 8(1)-7(0) E     |
| CH <sub>3</sub> OH | 568566.054      | 3(-2)-2(-1) E   |
| CH <sub>3</sub> OH | 579151.005      | 12(-1)-11(-1) E |

## **Could a short wavelength Microwave radiometer find ice?**

Near surface dielectric constant (with cross polarization)
Near surface thermal gradient
Extreme sensitivity to chemical species in vapor

 Very low temperatures at high precision

**Development of arrays underway at JPL** 

MIRO: Measured Flight Performance Passband: 190 GHz, ~1.6 mm (millimeter wavelengths); 562 GHz, ~0.5 mm (submillimeter wavelengths) Spectral resolution: < 100 kHz (sub-millimeter) Spatial resolution: 75 m (millimeter); 25 m (sub-millimeter) Field of view: < 22 arc minutes (millimeter); < 8 arc minutes (sub-millimeter) Radiometric sensitivity: 1 K (continuum) Mass/power: 19.9 Kg / 43 W







### **Could a long wavelength Microwave radiometer find ice?**

Dry regolith and icy regolith will show very different thermal profile with depth, which should appear in microwave data. (in addition to dielectric changes, scattering, etc.)





### **Could a long wavelength Microwave radiometer find ice?**

Dry regolith and icy regolith will show very different thermal profile with depth, which should appear in microwave data. (in addition to dielectric changes, scattering, etc.)



## Chang'e 1 and 2 had a 4 channel microwave radiometer (3.0, 7.8, 19.35, 37 GHz)



## Chang'e 1 and 2 had a 4 channel microwave radiometer (3.0, 7.8, 19.35, 37 GHz)

