Star-Planet Interactions Discussion

Lessons from Our Star and Solar System

Paulett Liewer, Jet Propulsion Laboratory, California Institute of Technology
Planetary Magnetic Fields: Planetary Interiors and Habitability
Keck Institute for Space Studies,
August 12 - 16, 2013

© 2013 California Institute of Technology. Government sponsorship acknowledged.

ANTENNAS IN SPACE!

- Star-planet emission contrast in our solar system most favorable in radio[~1 for Jovian decameter]
- Jupiter's emission seen from Earth
- Voyager detected kilometric radiation from poles of Saturn, Uranus and Neptune

STEREO views of Solar Corona

(add movie later)

Solar Wind – Magnetosphere Interactions

Unmagnetized flow impinging on magnetized obstacle

- Radio and UV emissions from planets with magnetospheres increase with increased solar wind (SW)kinetic energy flux
 - Seen at Jupiter (Zarka&Genova 1983; Gurnett+ 2002;
 Hess+ 2012) & Saturn (Prange+2004)

Process

- SW energy dissipated in magnetic reconnection which accelerates electrons, leading to coherent electron cyclotron maser emission near and auroral ultraviolet emission in polar regions
- Radiometric Bode's Law introduced in 1984 (Desch & Kaiser)

Moon – Magnetosphere Interactions

Magnetized flow impinging on an obstacle

- Interaction of moons with planetary magnetospheres also causes strong radio and UV emissions
 - Seen at Jupiter & Saturn (what about Neptune & Uranus?)
- Magnetized obstacle (Jupiter-Ganymede; "dipolar")
 - Continuous reconnection between 2 magnetospheres accelerates electrons causing CMI in auroral regions
 - Analogy to Star-planet reconnection?
- Unmagnetized obstacle (Jupiter- Ion; "unipolar")
 - Relative motion of moon and magnetopshere causes electron acceleration via electric field (waves or induced) causing electron cyclotron maser emission
 - Analogy to unmagnetized hot Jupiters or planets around white dwarfs?

Generalized Radio Bode's Law - Zarka (2007)

Radio power vs. incident kinetic power or Poynting Flux

- Captures both types of interactions
- Kinetic-to-radio efficiency is 10^{-5} , magnetic-to-radio efficiency is 2×10^{-3}

• E, J, S, U, N: 5 radio planets

○ Io, Ganymede,Callisto (upper limit)

Extrapolating to Extra-solar systems

- Various other extrapolations from our solar system appear in the literature
 - Refs Farrell+ (1999); Lazio+ (2004), Hess & Zarka (2011)
 - How good are the extrapolations?
- What if a star has superflares?
 - Largest known Earth event: Carrington event ~10³² ergs
 - Interplanetary shocks lead to big enhancements in radio emission
 - Superflares (10³³-10³⁶ ergs) in Kepler data analyzed (Maehara +, Nature 2012 & Notsu+ Ap, 2013)
 - Found 365 superflares (>10³³ ergs on 148 solar-type star)
 - Statistics not consistent with hot Jupiter as cause
 - Stars appear to have larger starspots than our Sun