

Searching for Life on Mars

Rohit Bhartia, JPL Planetary Science/Astrobiology Group Deputy PI SHERLOC/M2020

What to take away from this talk

- Life tends to "clump" in fractures/voids. Getting spatial context combined with chemistry is necessary.
- There is no one "best" method of analysis: Each technique has its unique capabilities and its challenges.... So combine them.
- What targets can be measured to search for life and what are the challenges

Signatures of Life on Mars?

Viking Landers

GC/MS + Sample Handling

Organics: Inconclusive
Indications of a highly oxidizing
environment

Phoenix Lander

GC/MS + Sample Handling

Organics: Inconclusive *Detection of Perchlorates*

Curiosity/MSL

GC/MS + Sample Handling

Organics: Yes
Organics altered by
Perchlorates

SHERLOC: Deep UV Fluorescence/Raman Mapping

PIXL: X-ray Fluorescence Mapping

SuperCam: Time-gated Visible Raman spectroscopy

Searching for Biosignatures

Which of these have life or possibly signs of life, and how to do you know where to start?

Searching for Life through Biosignatures

- <u>Biosignature:</u> any substance such as an element, isotope, molecule, or phenomenon that provides scientific evidence of past or present life.
- Bulk Analysis Methods: (GCMS/LC/CE/etc.) detection and identification of specific molecules, ratios of specific organics, organic inventory, etc.
- Mapping/Imaging Methods: (Raman/XRF/SIMS/SEM EDS/Microscopy etc.) detection and identification and spatial distributions of molecules and elements and provides morphology with chemistry

*apologies for not listing all possible instruments – suffice it to say there are many options out there

Bulk and Mapping/Imaging analyses

Its not a matter of which is "better"

Bulk analysis:

- Ingests a sample → Extracts materials of interest → Concentrates → Detects
- Enables separation of mixed materials by chromatography
- Detection observes extracted and processed material at ppb to ppt levels
- Loss of mineral/organics spatial context
- Cross reactions/alteration from matrix possible

Mapping/Imaging:

- Illuminate sample → Detect signal → Move to next volume
- Maintains mineral/organics spatial context
- Detection of material down to 1 cell/view volume
- Small volume analysis: need to illuminate material of interest to detect
- Identification difficult in mixed systems without increased spatial resolution

Bulk and Mapping/Imaging analyses

Its not a matter of which is "better"

Deep Biosphere/Subsurface Ice Environments on Earth

- Bioload is ~ 1x10³ to 1x10⁴ cells/cm³
- Assume 1 cell has 200fg C (2x10⁻¹³ g C) and rock is ~2.5g/cm3
- But what is the distribution?

Assuming Even Distribution

0.5mm

1cell

Bulk: Detection by concentration (sub ppb) **Scanning/mapping:** Single cell detection needed Thus requires 10million analyses/cm³

Assuming Clustering

100-1000cells/cluster

Bulk: Detection but will loose knowledge of clusters **Scanning/mapping:** single cell detection not needed **Use in conjunction (Scan to target bulk analysis)**

Life in Fractures/voids

Life in the fractures

• 10⁴ cells/cm² on the fracture surface

 Sessile population is 100-1000x the number of planktonic cells measured in the borehole water

• Very slow doubling times (Kieft & Phelps, 1997)

Defining Life: What do we look for?

"Life is a self sustaining chemical system capable of Darwinian evolution"

- 1. Life as we know it on Earth
 - contains DNA/RNA/proteins/fatty acids
 - key biosigs example hopanes/isotopes
 - Note: We are continuously learning about life on Earth
- 2. Non-Earth Centric approach (General Life)
 - assume life on Earth is not the only solution
 - another set of amino acids to another structure
 - detection of "patterns" that are indicators of life

Both approaches are necessary

- **Growth/Reproduction**
- Metabolism
- **Functional Molecules**
- Potential Biomolecules components
- General Indicators

Technique: Labeled Fluorescence Microscopy

https://astrobiology.nasa.gov/research/life-detection/ladder/

S. Pirbadian et al 2014 Sep 2; 111(35): 12883-12888. doi: 10.1073/pnas.1410551111

- Growth/Reproduction
- Metabolism
- Functional Molecules
- Potential Biomolecules components
- General Indicators

Technique: Time-lapse DIC Microscopy/SIMS

https://astrobiology.nasa.gov/research/life-detection/ladder/

- Growth/Reproduction
- Metabolism
- Functional Molecules
- Potential Biomolecules co
- General Indicators

Proteins

Technique: OMICs/MS/Raman/IR/CE

DNA

Adapted from https://astrobiology.nasa.gov/research/life-detection/ladder/

- Growth/Reproduction
- Metabolism
- Functional Molecules
- Potential Biomolecules components
- General Indicators

Technique: Raman/MS/IR/CE

Adapted from https://astrobiology.nasa.gov/research/life-detection/ladder/

What can you measure?

Astrobiology Ladder

- Growth/Reproduction
- Metabolism
- Functional Molecules
- Potential Biomolecules components
- **General Indicators**

Technique: Mass Spec/LC/XRF/Raman

Adapted from https://astrobiology.nasa.gov/research/life-detection/ladder/

Organics: Abiotic vs. Potential Biosignatures

*IDPs: Interplanetary Dust Particles

Conclusions

- Life tends to "clump" in fractures/voids. Getting spatial context combined with chemistry is necessary.
- There is no one "best" method of analysis: Leverage the clumped nature of life to couple mapping and bulk methods.
- Use both terrestrial focused targets and non-earth centric approaches to search for life.

Acknowledgements

Jan Amend, USC

Abigail Allwood, JPL

Luther Beegle, JPL

Katrina Edwards, USC

Moh El-Naggar, USC

Evan Eshelman, Caltech

William Hug, PSI

Kenneth Nealson, USC

Victoria Orphan, Caltech

John Priscu, MSU

Ray Reid, PSI

Haley Sapers, USC/Caltech/JPL

Greg Wanger, USC/Caltech/JPL

Kris Zacny, Honeybee

.... And many others

NAI – Life Underground

PSTAR – WATSON

M2020- SHERLOC

Questions?

