Drilling: How do we access subsurface on Mars

Keck Institute for Space Studies (KISS)

MarsX

January 12, 2018

Dr. Kris Zacny

Director of Exploration Technology Group Honeybee Robotics zacny@honeybeerobotics.com

Why Drilling?!

(Short) History of Mars (Shallow) Drilling

2003 MER Rock Abrasion Tool [5 mm]

2008 Mars Phoenix Rasp [1 cm]

2011 MSL Powder Acquisition Drill [5 cm]

Upcoming: 2018 InSight Mole [5 m]

Upcoming: Mars2020 Coring Drill [6 cm]

Upcoming: 2020 ExoMars Drill [2 m]

Drilling 101

Drilling Architecture Development Process

Drilling Steps

1. Drilling

+ 2. Cuttings Removal

Selection of Drilling Method

Selection of Cuttings Removal

Generating drilling fluid on Mars

- Drilling power -> heat -> latent
 heat -> sublimation
- Volumetric expansion of ice → vapor 1000's x

But problems can happen in icy soil (even on Mars)!

Recovered (after a lot of work!)

What options do we have?

- Temperature measurement alone not sufficient
- Measure Temperature AND Resistivity
- Look for a large ΔR/ Δ T
 - $\Delta R/\Delta T = 700 k\Omega/$ °C vs. 75 $k\Omega/$ °C

1 m class drill

Drilling Approaches

"Bite" Sampling Concept

- Drill in short (~ 10 cm) "bites"
- Preserve stratigraphy in "bites"
- More accurate strength measurement of subsurface

Advantage of Bite Approach

Continuous Auger

Bite Approach

Implementation of "Bite" Sampling

10 cm

4. Rotate and retract auger to deliver ice-bearing material still within sampling system

1. Drill "Bites" into ice-bearing material

Ice Bearing Material 3. Inspect cuttings with Infrared Sensor and Camera. If ice bearing material is detected, proceed to next step. Otherwise continue taking "Bites"

Rover Architecture: Atacama

Rover Architecture: Resource Prospector

Lander Architecture: Mars IceBreaker

Sample Delivery using Drill

Sample Delivery using Gas

Testing in Cold Regions

McMurdo Station, Antarctica

Mars Analog: University Valley, Antarctica

Ice Cemented Ground – Soil Did Not Stick!

Antarctic Dry Valleys: Massive Ice

Test in Mars chamber

- 1 m depth in 3.5 m chamber
- Tests in
 - ice (w and w/out perchlorate)
 - icy-soil
 - rock
- Drilling at 1-1-100-100 level: 1m in 1 hr with 100 Watt and 100 Newton WOB

10 m class drills

MARTE

- 10 m coring drill
- Core processing
- Instruments for core analysis
- ASTEP funded (Pl. Carol Stoker)

MARTE Limestone Drilling Test NASA Ames Research Center May 2005

Honeybee Robotics

STEM-Pneumatic Drill

Pneumatic Drill Testing

- Mars pressures
- 2 m in 2 minutes

>100 m class drills

Melt probes

- Developed in 1960s by CRREL
- Simple but slow, power/energy hungry
- Work in ice only (or very limited wt% silt)

Inchworm/Wireline/Cable Suspended

AMNH Deep Drill

WATSON - Deep Drill with UV/Raman

WATSON – next steps

Greenland 2019

d. Umbilical Cable WATSON Deployment Tower Top Anchors Z-stage Bottom Anchors Winch Auger & Bit

Mars (2029 @)

SLUSH Drill: Thermo-Mechanical

Search for Life Using Subsurface Heated Drill

Drill based water extraction systems

RedWater

STEM drill with pneumatic cuttings transport makes a hole

STEM based pumping system deploys and pumps water to the surface

2nd NASA's Mars Ice Challenge (RASC-AL)

Dates: June 5-7, 2018

NASA Langley

Conclusions

- Mars depth record climbed from 5 mm in 2003 to 5 cm in 2012
- Need technology to reach meters and possibly 100s of meters.
- Current Technology Readiness Level (TRL)
 - 1 m class systems are at TRL 6
 - 10 m class systems are at TRL 4
 - 100 m class systems are at TRL 4
- Drills can bring sample to an instrument AND can bring an instrument to a sample:
 - Temperature profile and k, (heat flow probe)
 - Resistivity, LIBS, UV, Raman, Microscope
 - Strength/density (comes "free" from drill telemetry)
- There is no substitute for tests in analogs on Earth (e.g. Dry Valleys)
- Numerous ISRU options exist for mining water on Mars

Acknowledgments

- NASA SBIR
- NASA ROSES Programs (PIDDP, ASTEP, ASTID)
- NASA HEOMD Advanced Exploration Systems
- NASA JPL

Thank You!

