

# Recent NGST HEMT Device & MMIC Development MMIC Array Receivers and Spectrographs Workshop

Richard Lai and Xiao-Bing (Gerry) Mei Northrop Grumman Corporation, Redondo Beach CA, 90278

July 21, 2008

# HEMT Technology Development Applicable towards Radiometric Applications at NGST

- NGST Internal R&D
  - Yearly budget > \$2M for last 10 years
  - First LNAs at various frequencies including 90, 140, 150, 180, 240 GHz
  - First 30 dB gain 160-190 GHz amplifier block and full radiometer
- DARPA
  - MIMIC Phase II W-band GaAs HEMT LNA
  - TRP W-band MMW Camera
  - MAFET MMW InP HEMT MMIC production
  - SWIFT 340 GHz Transceiver
  - Hi-Five 220 GHz Driver
- JPL CHOP focused development of InP HEMT croyogenic LNAs
  - FCRAO 94 GHz LNA UMass Amherst
  - European Space Agency ground telescopes MMW LNAs, PINs
  - GEOSTAR, **183 GHz SAR**
  - Deep Space Network, Paul Allen Telescope, Hawaii MMW LNAs
- Projects
  - Jason (TOPEX/Poseidon) Ka-band LNAs
  - ODIN, IMAS, MLS (120 GHz flight)
  - Cloudsat (W-band)
  - PLANCK and Herschel (MMW, W-band power)
  - ALMA (NRAO, X-band LNAs, W-band power)
  - CSIRO (Austrailia): Narrabri telescopes, VLA (MMW to 200 GHz)
  - NOAA (ATMS, CMIS) development (MMW to 200 GHz)
  - LRR (Goddard X-band)
  - NRL G-band MMIICs





Odin Module



W-band MMW Camera



# **InP HEMT**





#### **Features**

- Pseudomorphic growth of InP HEMT layers with MBE
- Mobility, fT improve with higher Indium composition
- Single recess, semi-selective etch process
- SiNx passivation
- 2-level interconnect metal process with airbridges, TFR and MIMCAP
- 50 um thick chips with through via process



Process commonality between different InP HEMT technologies shortens development cycle



### **Cryogenic InP HEMT**

NORTHROP GRUMMAN

#### Shot noise due to forward Ig can impact overall NFmin Cryo7 4139-043 Cryo 9 4260-31

#### lgs vs Vgs @15K



Vgs [V]

Ref. M. Pospieszalski et. al. 2005



#### 80 0.14 70 0.12 Typical Rc for baseline mproved process (0.10 **mu-s** 0.08 0.06 60 **Device count** Rc\_pg 50 Rc\_fic x Rc\_pre Rc\_pst 40 + Rc\_po Rc 30 Baseline 0.04 20 0.02 Improved process 10 0.00 0 Contact Resistance (mΩ.mm) Lot. wafer

### **InP HEMT: Ohmic contact improvement**

- Ohmic contact process has been optimized
  - Composite n+ cap
  - Non-alloyed Ohmic metal
- Improved Ohmic contact resistance by over 60%
- Good on-wafer uniformity.
- Good lot-to-lot repeatability

### DC characteristics of 0.1um InP HEMT with improved Ohmic process



| Rc (Ω-mm)           | 0.04 (Ω-mm)  |
|---------------------|--------------|
| BVgd                | 3.5V         |
| Gmp, Vds=1V         | 1400 (mS/mm) |
| fT, Vds=1V          | 230 GHz      |
| MSG @ 26GHz, Vds=1V | 17 dB        |

- 20% improvement in Gmp
- Low V-knee: good for low power performance

NORTHROP GRUMMAN

- Well controled output conductance
- Good pinch-off characteristics



### **Low DC Power InP HEMT**



### InP HEMT Production W-band MMIC Performance



– 100 mm InP HEMT

NORTHROP GRUMMAN

10

(GHz)

#### NORTHROP GRUMMAN

### Noise figure of a 3-stage W-band LNA MMIC



- Vds=1V, Ids=18mA
- 2.5 dB noise figure at 94GHz
- 19.4dB associate gain



- Broadband Three-Stage Amplifier
  - Grounded Coplanar Waveguide (GCPW), with 100-µm substrate
- Low Power, Low-Noise Results
  - 5.4 dB Noise Figure with 11.1 dB Assosciated Gain at 94 GHz
  - Total DC Power only 1.8 mW
  - 0.6 mW per stage



# InAs channel Design



NORTHROP GRUMMAN

- Composite channel with InAs/InGaAs
- Hall mobility of 16,000 cm<sup>2</sup>/V-sec and 3.5 x 10<sup>12</sup>/cm<sup>2</sup> sheet charge
- Highly doped cap layer for low ohmic contact/access resistance
- Layer structure scaled for 35 nm gate length

# Sub 50 nm T-gate





- >5:1 ratio gate top to gate length for low Rg
- Single recess, 100 nm length typical
- 20 KeV exposure, two layer resist scheme

# **THz InP HEMT**





# • 2 and 4 finger devices

- Typical d.c. Gmp > 2 S/mm @1V Vds
- Low on-resistance and knee voltage
- Good pinchoff & output resistance



# **THz Fmax**



First THz fmax Transistor

### • 2f 20 um InP HEMT

NORTHROP GRUMMAN

- SOLT calibration
- Vd = 1V, Id = 6 mA
- U@100 GHz ~ 22 dB
- MSG@100 GHz ~ 14 dB
- Model predicts even higher
   performance

#### First THz fmax Transistor



# **Small Signal Model**

|                  |       | InP HEMT Small-Signal Model |        |       |  |                                                                |   |
|------------------|-------|-----------------------------|--------|-------|--|----------------------------------------------------------------|---|
| Param.           | Unit  | 100 nm                      | 70 nm* | 35 nm |  | Comments                                                       |   |
| $RFG_{m}$        | mS/mm | 1125                        | 1500   | 2600  |  | Epitaxy; threshold voltage                                     |   |
| C <sub>gs</sub>  | pF/mm | 0.90                        | 0.83   | 0.80  |  | Lg reduction; higher Cgs due to shorter gate to channel design | • |
| C <sub>ds</sub>  | pF/mm | 0.63                        | 0.60   | 0.30  |  |                                                                | • |
| C <sub>dg</sub>  | pF/mm | 0.16                        | 0.18   | 0.13  |  | Improved Cdg                                                   | • |
| R <sub>ds</sub>  | Ω-mm  | 10.4                        | 7.2    | 6.0   |  | Epitaxy; threshold voltage                                     |   |
| R <sub>g</sub>   | Ω-mm  | 120                         | 150    | 250   |  |                                                                |   |
| f <sub>T</sub>   | THz   | 0.2                         | 0.35   | 0.45  |  | Simulated from model                                           |   |
| f <sub>max</sub> | THz   | 0.4                         | 0.7    | 1.4   |  | Simulated from model                                           |   |
| MSG@340 GHz      | dB    | 1                           | 4      | 10    |  | Simulated from model                                           |   |

- Sub 50 nm InP HEMT
- Vd = 1V, Id = 300 mA/mm
- Derived from measurements on 2f10 um, 2f20 um, 2f30 um devices for 340 GHz s-MMIC amplifiers

\*reported IEDM 2000







# NORTHROP GRUMMAN

### ABCS compared with 35 nm InP HEMT (SWIFT)





– 2-finger 40um InP HEMT.
– Peak Fmax = 1.1 THz; fT = 550 GHz

# Challenging Interconnects and Passives **NORTHRO** for Sub MMW Integrated Circuits (S-MMICs)



GRUMMAN

- TFR, MIMCAP, 2 interconnect metal layers with airbridges
- Interconnections scaled down by factor of 5
- Slot via development to 50 um thick InP substrate
- Overall S-MMIC size is ~10x smaller than MMW MMICs

# **Highest Frequency Circuits**



### <u>Features</u>

- 35 nm InP HEMT
- 50 um InP with vias
- 3-stage s-MMIC LNA
  - 2f 20 um per stage; 1V, 300 mA/mm

NORTHROP GRUMMA

- 21 dB gain @280 GHz (7 dB/stage)
- 15 dB gain @340 GHz (5 dB/stage)
- Best LNAs 18 dB gain@340 GHz
- NF ~ 7 dB@330 GHz

- Highest frequency s-MMIC amplifier ever demonstrated
- Excellent match to simulation validates model
- Validates THz fmax Transistor





# **G-band LNA performance**

- Legacy 3-stage 70 nm InP HEMT G-band LNA MMIC achieved 12 dB gain from 175-210 GHz
  - Singled ended MMIC LNA
  - 2f20 um devices on each of 3 stages
- Same MMIC fabricated on the new sub 50 nm InP HEMT process
- 21 dB gain has been achieved from 175-210 GHz at Vds = 1V and Id = 9 mA
- 18 dB gain was achieved at 220 GHz
- The gain shape with new device is preserved
  - 9 dB higher total gain achieved
  - 3 dB higher gain per stage achieved



#### Gain vs. Frequency Measurement

![](_page_22_Figure_13.jpeg)

## **Going Forward – HEMT Technology For Radiometers**

![](_page_23_Picture_1.jpeg)

#### Understand fundamentals towards cryogenic NF performance

- device stability
- role and reduction of shot noise in cooled devices
- continue to study next generation materials including ABCS HEMT, InAs channels
- apply and continue to push HEMT improvements towards cryogenic performance
- optimization of device technologies for specific frequency bands
  - X-band cryogenic device needs to be different than than W, G-band device

#### Continue to push the frequency envelope for amplifier technology

- shorter gates, reduced parasitics, InAs channels
- 140 GHz, 220 GHz window for MMW cameras
- 180 GHz for atmospheric sensing
- push 220, 260, 340 GHz and beyond 1 THz one day?
- advanced packaging concepts

#### Next generation insertions – larger arrays, cameras, high frequency sensors

- 35, 94 GHz imaging solutions being introduced in commercial market
- 140, 220 GHz active radiometers for next generation cameras
- 180 GHz SAR concepts are being explored
- size, weight, power reduction with wider bandwidth and lower noise figure desired

### Going Forward – Proposed Topics of Research for **NORTHROP GRUMMAN** Keck program in next 2-3 years

#### Characterize, analysis, optimize InP HEMT device for cryogenic applications

- No systematic study has been conducted on InP HEMT devices to date
- At NGST, InP HEMTs are optimized for room temperature operation and have generally proven to translate to good cryogenic performance
- Several questions have been identified
  - measure and analyze devices to develop correlations to MMIC amplifier results
  - cryogenic leakage current shot noise is significant at lower frequencies
  - device stability with high Indium content channels
  - what gate length and device size is ideal at lower frequencies?
  - 35 nm device improvements at higher frequencies translate to lower freq?
  - do ohmic improvements at room temperature translate to cryogenic advantages?
  - how do recent isolation, gate metal, gate recess and passivation improvements impact cryogenic performance?
  - is there a more ideal device design/process target for cryogenic devices
    - threshold voltage
    - gate length
    - recess process
    - epitaxial design
    - device topologies

### Going Forward – Proposed Topics of Research for **NORTHROP GRUMMAN** Keck program in next 2-3 years

#### <u>Characterize, analysis, optimize InP HEMT device for cryogenic applications</u> (cont.)

- Systematic cryogenic study of existing samples and device/process splits both through MIC amplifiers and cryogenic on-wafer probing measurements

- Study next generation materials including ABCS, InAs channels, new metals and passivation layers

- Update models to set goals and metrics to meet 3x quantum limit noise performance

- develop correlations to current device and MMIC amplifier results

- evaluate proposed improvements to these goals

#### Apply improvements to update latest SOA InP HEMT designs

- develop and adapt new device models towards updated cryogenic LNA designs based on device improvements

- develop new designs to take advantage of performance improvements

– example – lower Vds, Ids at equivalent gain

- consider splitting device technologies used for specific frequency ranges
- new designs to push higher frequency, wider bandwidth