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HEMT Technology Development Applicable

towards Radiometric Applications at NGST

» NGST Internal R&D
— Yearly budget > $2M for last 10 years
— First LNAs at various frequencies including 90, 140, 150, 180, 240 GHz
— First 30 dB gain 160-190 GHz amplifier block and full radiometer
= DARPA
— MIMIC Phase Il W-band GaAs HEMT LNA
— TRP W-band MMW Camera
-  MAFET MMW InP HEMT MMIC production
— SWIFT - 340 GHz Transceiver
— Hi-Five — 220 GHz Driver

» JPL CHOP - focused development of InP HEMT croyogenic LNAS
— FCRAO 94 GHz LNA UMass Amherst
— European Space Agency — ground telescopes MMW LNAs, PINs
— GEOSTAR, 183 GHz SAR
— Deep Space Network, Paul Allen Telescope, Hawaii MMW LNAs
= Projects
— Jason (TOPEX/Poseidon) Ka-band LNAs
— ODIN, IMAS, MLS (120 GHz flight)
— Cloudsat (W-band)
— PLANCK and Herschel (MMW, W-band power)
— ALMA (NRAO, X-band LNAs, W-band power)
— CSIRO (Austrailia): Narrabri telescopes, VLA (MMW to 200 GHz)
— NOAA (ATMS, CMIS) development (MMW to 200 GHz)
— LRR (Goddard — X-band)
— NRL G-band MMIICs
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INP HEMT e
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Features
» Pseudomorphic growth of InP HEMT layers with MBE
» Mobility, fT improve with higher Indium composition
» Single recess, semi-selective etch process
» SiNX passivation
« 2-level interconnect metal process with airbridges, TFR and MIMCAP
« 50 um thick chips with through via process




INP HEMT Device Structure
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Cryogenic InP HEMT
Cryo-4 300K
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Cryogenic InP HEMT P

 Shot noise due to forward Ig can impact overall NFmin
Cryo7 4139-043 Cryo 9 4260-31

lgs vs Vgs @15K

Cryo7 4139-043 Ig vs Vgs at 11K Cryo9 4260-031 Ig vs Vgs at 11K
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e
InP HEMT: Ohmic contact improvement
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= Ohmic contact process has been optimized
— Composite n+ cap
— Non-alloyed Ohmic metal

Improved Ohmic contact resistance by over 60%
= Good on-wafer uniformity.
Good lot-to-lot repeatability
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PrTHROD S

DC characteristics of 0.lum InP HEMT with improved

Ohmic process
100 Rc (Q-mm) 0.04 (Q-mm)
£ 1400
2 1200 -
Z 800
S 600 Gmp, Vds=1V 1400 (MS/mm)
< 400 - /
E
2 203 fT, Vds=1V 230 GHz
06 04 02 00 02 04 06
v MSG @ 26GHz, Vds=1V 17 dB
gs (V)
800
700 Vgs=0.4V

Ids (mA/mm)
N
o
o

0.0

T
0.2

T
0.4

0.6
vds (V)

1.2

20% improvement in Gmp

Low V-knee: good for low power performance
Well controled output conductance

Good pinch-off characteristics
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Low DC Power InP HEMT
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MGG/MSG @ 10GHz (dB)

WLNADS5/a-J4, wafer 048, HCD4200ABP
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* Good choice for low DC power applications

Peak Gm>900mS/mm at Vds=0.2V
« Ft>140 GHz at a DC power of 20mW/mm




NF at 94 GHz (dB)
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g

100 mm InP HEMT
60 wafers/20 sites per wafer
On-wafer testing

Fixture testing NF is better
than on-wafer data by 0.5 dB
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i
Noise figure of a 3-stage W-band LNA MMIC

25 T

20 +

)
2 )
£ 45| 1 2
© 1 4 o
O =
] 1 o
] =
© I T4 o
o 2
3 |2
7] . 1
< L 3

) W .

i T2

86 88 90 92 94 96 98
Frequency (GHz)

« Vds=1V, lds=18mA
« 2.5dB noise figure at 94GHz
 19.4dB associate gain
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InAs channel Design

Gate

InAlAs barrier

<4 i doping plane
InAlAs barrier ping p

InGaAs

InGaAs

InAlAs buffer

Sl InP substrate

« Composite channel with InAs/InGaAs

« Hall mobility of 16,000 cm4/V-sec and 3.5 x 10'%/cm? sheet charge
« Highly doped cap layer for low ohmic contact/access resistance
« Layer structure scaled for 35 nm gate length




Sub S0 nm T-gate
_ e e

« >5:1 ratio gate top to gate length for low Rg
« Single recess, 100 nm length typical
« 20 KeV exposure, two layer resist scheme
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e 2 and 4 finger devices

* Typical d.c. Gmp > 2 S/Imm @1V Vds
* Low on-resistance and knee voltage
* Good pinchoff & output resistance

HSA2030
Peak Gm = 2300 mS/mm
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THz Fmax —

First THz fmax Transistor

e 2f 20 um InP HEMT

_ » SOLT calibration
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Small Signal Model ——

InP HEMT Small-Signal Model

Unit 100 nm 70 nm* 35 nm Comments
mS/mm 1125 1500 2600 Epitaxy; threshold voltage

Lg reduction; higher Cgs dueto @ SUb 50 nm |nP HEMT
e 0.90 0.83 0.80 shorter gate to channel design
eVd =1V, Id = 300 mA/mm

* Derived from measurements
on 2f10 um, 2f20 um, 2f30
um devices for 340 GHz s-

pF/mm 0.63 0.60 0.30
pF/mm  0.16 0.18 0.13 Improved Cdg

Q-mm : 7.2 6.0 Epitaxy; threshold voltage

Q-mm MMIC amplifiers

THz . . Simulated from model

THz . . . Simulated from model

MSG@340 GHz dB Simulated from model

*reported IEDM 2000
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future development
for THz systems
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ABCS compared with 35 nm InP HEMT (SWIFT)
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Bias dependance e
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— 2-finger 40um InP HEMT.

— Peak Fmax = 1.1 THz; fT = 550 GHz
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Challenging Interconnects and Passives
for Sub MMW Integrated Circuits (S-MMICs)”
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 TFR, MIMCAP, 2 interconnect metal layers with airbridges
* Interconnections scaled down by factor of 5

* Slot via development to 50 um thick InP substrate

* Overall S-MMIC size is ~10x smaller than MMW MMICs



Highest Frequency Circuits

~L L Features
SRERI SRR - 35 nm InP HEMT
AT Bl « 50 um InP with vias
L, | potied-pessurg » 3-stage s-MMIC LNA
o o Sl - 2f 20 um per stage; 1V, 300 mA/mm

- 21 dB gain @280 GHz (7 dB/stage)

E-Parameters [dB]

Syareramramrrasrearrra M 15 (1B gain @340 GHz (5 dB/stage)
- Best LNAs 18 dB gain@340 GHz
BN, -NF ~ 7 dB@330 GHz

e
aginid

« Highest frequency s-MMIC amplifier ever demonstrated
 Excellent match to simulation validates model
o Validates THz fmax Transistor
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G-band LNA performance

* Legacy 3-stage 70 nm InP HEMT G-band LNA
MMIC achieved 12 dB gain from 175-210 GHz
e Singled ended MMIC LNA
« 220 um devices on each of 3 stages

« Same MMIC fabricated on the new sub 50 nm
InP HEMT process Gain vs. Frequency Measurement

21 dB gain has been achieved from 175-210 sub 50 nm InP HEMT |
GHz at Vds = 1V and Id =9 mA o ¥ '

» 18 dB gain was achieved at 220 GHz g

* The gain shape with new device is preserved "
* 9 dB higher total gain achieved ‘

70 nm InP HEMT

« 3 dB higher gain per stage achieved

S 1EF e 1T TFR WA R v MM Fd 35
Fraguency [GHz]
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Going Forward — HEMT Technology For e
Radiometers

Understand fundamentals towards cryogenic NF performance
- device stability
- role and reduction of shot noise in cooled devices
- continue to study next generation materials including ABCS HEMT, InAs channels
- apply and continue to push HEMT improvements towards cryogenic performance
- optimization of device technologies for specific frequency bands
- X-band cryogenic device needs to be different than than W, G-band device

Continue to push the frequency envelope for amplifier technology
- shorter gates, reduced parasitics, InAs channels
- 140 GHz, 220 GHz window for MMW cameras
- 180 GHz for atmospheric sensing
- push 220, 260, 340 GHz and beyond — 1 THz one day?
- advanced packaging concepts

Next generation insertions — larger arrays, cameras, high frequency sensors
- 35, 94 GHz imaging solutions being introduced in commercial market
- 140, 220 GHz active radiometers for next generation cameras
- 180 GHz SAR concepts are being explored
- size, weight, power reduction with wider bandwidth and lower noise figure desired

24
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Going Forward — Proposed Topics of Research for it
Keck program in next 2-3 years

Characterize, analysis, optimize InP HEMT device for cryogenic applications
- No systematic study has been conducted on InP HEMT devices to date

- At NGST, InP HEMTSs are optimized for room temperature operation and have
generally proven to translate to good cryogenic performance

- Several questions have been identified

- measure and analyze devices to develop correlations to MMIC amplifier results
- cryogenic leakage current shot noise is significant at lower frequencies
- device stability with high Indium content channels
- what gate length and device size is ideal at lower frequencies?
- 35 nm device improvements at higher frequencies translate to lower freq?
- do ohmic improvements at room temperature translate to cryogenic advantages?
- how do recent isolation, gate metal, gate recess and passivation improvements
impact cryogenic performance?
- is there a more ideal device design/process target for cryogenic devices
— threshold voltage
— gate length
— recess process
— epitaxial design
— device topologies

25



NORTHROP GRUMMAN

Going Forward — Proposed Topics of Research for
Keck program in next 2-3 years

Characterize, analysis, optimize InP HEMT device for cryogenic applications

(cont.)

- Systematic cryogenic study of existing samples and device/process splits both
through MIC amplifiers and cryogenic on-wafer probing measurements

- Study next generation materials including ABCS, InAs channels, new metals
and passivation layers

- Update models to set goals and metrics to meet 3x quantum limit noise
performance

- develop correlations to current device and MMIC amplifier results
- evaluate proposed improvements to these goals

Apply improvements to update latest SOA InP HEMT designs

- develop and adapt new device models towards updated cryogenic LNA
designs based on device improvements

- develop new designs to take advantage of performance improvements

— example — lower Vds, Ids at equivalent gain
- consider splitting device technologies used for specific frequency ranges

- new designs to push higher frequency, wider bandwidth
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