

What We Know and Do Not Know About Cryogenic HFET's

Marian W. Pospieszalski National Radio Astronomy Observatory mpospies@nrao.edu

Outline

- Short history of cryogenic FETs
- Theory and experiment: examples of amplifiers (1989-2008)
- On minimum noise measure of InP HFETs
- Things we still do not know
- Where do we go from here?
 - New devices
 Not so cold receivers
 Very broadband receivers

Cryogenic Experiments

- 1970 First cryogenic experiments, Loriou *et al* (France NTC), 120 K at 1 GHz L-band
- 1976 Cryogenic experiments at X-band ,Liechti *et al.* (HP), 60 K at 12 GHz 1980
- 1980 Practical cryogenic amplifiers using MESFET's demonstrated, Weinreb *et al.* (NRAO), 8 K at 1.5 GHz, 20 K at 5 GHz
- 1984 GaAs/AlGaAs HFET at cryogenic temperatures, Pospieszalski, Weinreb (NRAO), 10 K at 8.4 GHz
- 1988 PHEMT cooled, Weinreb et al. (NRAO), 25 K at 40 GHz
- 1989 FET noise model suitable for CAD of cryogenic amplifiers
- 1993 Evaluation of InP HFET's at cryogenic temperatures, Pospieszalski *et al.* (NRAO), 10 K at 40 GHz

Evaluation of Different MESFET's S.Weinreb (1980)

V-N Receiver and Amplifier with GE HFET's, (1987)

Caltech, Pasadena , July 21, 2008

Simplest Noise Equivalent Circuit of a FET (1988)

Caltech, Pasadena, CA

Noise Parameters of Intrinsic Chip – Approximation

$$T_{\min} \cong 2 \frac{f}{f_t} \sqrt{g_{ds} T_d r_{gs} T_g} \qquad f_t = \frac{g_m}{2 \pi C_{gs}}$$

$$T_{\min} \approx \frac{f}{f_{\max}} \sqrt{T_g T_d} \qquad f_{\max} = f_t \sqrt{\frac{1}{4 g_{ds} r_{gs}}}$$

8-18 GHz Amplifier at 12.5 K (1988)

VLBA 40- 45 GHz Amplifier (1990)

Caltech, Pasadena , July 21, 2008

Optimal Noise Bias of InP HFET at 18 K (1993)

Example of "poor pinch off" InP HFET (1993)

T_a=297 K

Ta=18 K

Caltech, Pasadena, July 21, 2008

134

Dev. B

21

Comparison of GE/MM, HRL and TRW HFET's

MAP Amplifier: W-Band (1998)

MAP Amplifier: Noise Temperature

Caltech, Pasadena, July 21, 2008

40-50 GHz Amplifier at 15 K

EVLA K_a **Band Amplifier**

EVLA K_a **Band Amplifier**

EVLA K_a-Band Amplifiers at 19 K

EVLA Ka Band Amplifier

4-12 GHz Amplifier at 15 K

4-12 GHz Amplifier

M_{min} Prediction (1991) and State of the Art (2008)

M_{min} Prediction (1991) and State of the Art (2008)

ALMA BAND#6 RECEIVER

LO: 220-270 GHz in 10 GHz steps

M_{min} **Prediction (1991) and State of the Art (2008)**

- Dependence of T_d on device structure and properties of electron transport in the channel is not known
- 300 µm wide InP HFET's do not behave as expected from scaling (this applies to all the discrete wafers evaluated at NRAO)
- 200 µm from cryo3 wafer exhibit a very strong dependence of noise on drain voltage at L, S and C bands
- 80 and 60µm wide devices from cryo3 4044-041 wafer exhibit (sometimes) dc instability which seems to be related to device layout

4_8 GHz AMPLIFIER AT 15 K

Is there a new low noise device just around the corner ?

Possible Future Technology: InAs/AISb HFET

Advantages: very high μ , and $v_s \rightarrow$ high g_m Disadvantages: impact ionization, high gate leakage currents State-of-the-art: $f_t \approx 160 \text{ GHz}$ $T_e \approx 180 \text{ K}$ at 32 GHz and $T_a=297 \text{K}$

For cryo3 devices: $f_t > 180 \text{ GHz}$ $T_e \approx 80 \text{K}$ at 32 GHz and $T_a = 297 \text{ K}$ $T_e \approx 8 \text{K}$ at 32 GHz and $T_a = 18 \text{ K}$

Rick's Performance Metric for an Array

$$FOM_{M} = B \times \frac{A_{eff}n}{T_{sys}^{2}}$$

GBT T_{sys} at Zenith Except Receiver

To Cool or Not to Cool

Rule of thumb for amplifiers:

$$T_n(77K) \approx \sqrt{5} \times T_n(15K)$$
$$T_n(297K) \approx 10 \times T_n(15K)$$

For 1-2 GHz:

 $T_{S}(15) = 15K$ $T_{S}(297) = 40K$ $T_{n}=3K$ $T_{n}=28K$

Wide Band Receivers

•Wide band amplifier: $T_{nav} = M_{min}(f_{max})$

•Wide band feeds: wire–like (lossy)

 Matching of wideband feeds to wide band amplifiers will always produce a structure in the baseline and degrade the noise performance