

College of Engineering Department of Atmospheric, Oceanic & Space Sciences

Keck Institute for Space Studies MMIC Array Receivers and Spectrographs Workshop Pasadena, CA 21-25 August 2008

Digital Correlators for Spaceborne Earth Remote Sensing - Current Status and Near Term Technology Development

Chris Ruf Space Physics Research Laboratory Department of Atmospheric, Oceanic and Space Sciences University of Michigan cruf 'at' umich 'dot' edu, 734-764-6561

1-d Fourier Synthesis Imager – X-Band Lightweight Rainfall Radiometer (LRR-X)

circa 1999-2004

LRR-X Anechoic Chamber Cal Results Spatial Interference Patterns

LRR-X Interference Patterns

LRR-X Interference Patterns

Antenna Array in Anechoic Chamber (above) Zero'th spacing; $\lambda/2$ spacing, real & imaginary (top right) $68\lambda/2$ spacing, real & imaginary (bottom right)

23 Jul 08

Ruf, Digital Correlators, KISS MMIC Worksmup

Department of Atmospheric, Oceanic and Space Sciences

LRR-X 13 June 2003 Pacific Northwest Storm

Ruf, Digital Correlators, KISS MMIC Workshop

pg 6

LRR-X Measured T_B and Retrieved Optical Depth and Rain Rate

- DC-8 Flight Lines on 13 June 2003 (above)
 - East/west raster scan over convective system west of Vancouver Island
- LRR-X raster scan images (right)
 - T_B (top) shows incidence angle dependence of ocean surface
 - Optical depth (middle) derived from T_B by inverting radiative transfer equation
 - Rain rate (bottom) derived from optical depth using Marshall-Palmer DSD and slab rain model

University of Michigan (09/03/2003)

LRR-X PIA Map 2003-06-13 20:46 UTC [500 m Resolution]

University of Michigan (09/03/2003)

23 Jul 08

Ruf, Digital Correlators, KISS MMIC Workshop

LRR Spaceflight Hardware Developments

Digital Correlation Radiometer RF input from antenna / Digital output to correlator DC Power = 550 mW; 0.55" thick (TRW manufactured) ASIC 25 channel complex correlator Real time DSP @ 2960 GigaInstructions/sec Input bandwidth: 11 Gigabytes/sec DC Power required: 1500 mW (U-Idaho/CAMBR manufactured)

23 Jul 08

Ruf, Digital Correlators, KISS MMIC Workshop

Digital Correlator ASIC

(Developed for LRR Spaceflight Version)

- Design Requirements
 - Compute auto and cross correlations for the I and Q components of 25 input channels
 - Scalable beyond 25 channels
 - Process up to 224 megasample/second/channel
 - Integrate for up to 15 milliseconds
 - DC: 1.5W
 - Maximize radiation tolerance
- Ultra-Low Power (ULP) CMOS process
 - 0.5V internal logic with 3.3V output interface

2-bit Analog-to-Digital Converter

(Developed for LRR Spaceflight Version)

- All three comparator thresholds independently controlled by 8-bit DACs
 - 100-250 mV (level 1), 220-280 mV (level 2), 250-400 mV (level 3)
 - 0.58 μ V noise in DAC threshold levels
- Ultra-Low Power (0.5V logic) CMOS process

U-Idaho CAMBR ASICs 2-bit ADC and 25x25 Channel Correlator

Ruf, Digital Correlators, KISS MMIC Workshop

rate

Vary digitzation clock The power consumed by the ADC chip vs clock frequency 10

2-bit ADC Characterization Test –

DC Power Requirement vs. Clock Speed

- Monitor current drawn by all power supplies
- DC Power $< 5 \text{ mW for } f_c$ < 100 MHz
- Digitization quality still excellent at $f_c = 300 \text{ MHz}$
- Some missed triggers beginning with $f_c = 350$ MHz

2-d Fourier Synthesis Imager – Geosynchronous Earth Orbit Synthetic Thinned Aperture Radiometer (GEOSTAR)

circa 2003-present

GEOSTAR –

Microwave Temperature and Humidity sounder

- Functionally equivalent to AMSU
 - Tropospheric temperature sounding @ 50-55 GHz with \leq 50 km resolution
 - Tropospheric water vapor sounding @ 183 ± 7 GHz with ≤ 25 km resolution
- 2-d Fourier Synthesis Imager to reduce mass & volume and eliminate moving parts

Receiver array → Resulting uv samples

Example: AMSU-A ch. 1

GEOSTAR Functional Block Diagram

23 Jul 08

Ruf, Digital Correlators, KISS MMIC Workshop

pg 15

- Correlator cell count = $3 * n^2 * m$
 - n = # of antennas/arm
 - n = 112 for 50 GHz array
 - n = 196 for 183 GHz array
 - -m = # of multiplications/antenna pair
 - m = 4 for I*I, I*Q, Q*I, Q*Q correlations
- 50 GHz array: 150528 correlator cells
- 183 GHz array: 460992 correlator cells
- 200 MHz or 1000 MHz clock speed
- 1- or 2-bit ADC samples

Design Architecture

- Power numbers presented here assume 183 GHz, 196 elements/arm 12-ASIC design
 - 12 identical ASICs (1 ASIC per arm pair per multiplication/accumulation type)
 - Additional assumption: point-to-point communications between digitizers and correlator ASICs (each ASIC input driven by a unique driver, not a "bus" with one driver and multiple receivers)

Ruf, Digital Correlators, KISS MMIC Workshop

Method

- Analyzed 250, 90 nm and 65 nm technologies
 - Detailed circuit level design of GeoSTAR specific correlator (multiplier-accumulator) cell @ 250 nm
 - Chip-level floorplanning of interconnect and clock distribution @ 250 nm
 - Parametric extrapolation of 250 nm power numbers to smaller technologies
 - Extrapolation method and accuracy has been verified by other project)

Results

Bits / Ant.	Clock rate	Geom.	Power/ ASIC (W)
1	1 GHz	90 nm	3.8
1	1 GHz	65 nm	2.6
1	200 MHz	90 nm	1.1
1	200 MHz	65 nm	0.9
2*	1 GHz	90 nm	10.5
2*	1 GHz	65 nm	6.2
2*	200 MHz	90 nm	2.9
2*	200 MHz	65 nm	2.0

(*) 2-bit actual power consumption likely to be lower than this figure due to potential design optimizations not yet implemented

Status and Plans

- 90 nm ULP available today, 65 nm ULP is on target for deployment in 1-2 year time frame
- Currently funded to build 50 channel version of ASIC correlator
 - Quad Flat Pack package to tackle internal ASIC design issues first, reduce risk
- Follow on steps (not currently funded)
 - Full 196 channel version with Ball Grid Array or Column Grid Array package
 - ULP 2-bit digitizer at ~1000 MHz

