

Planetary science data gathering

Why

- What are the big, driving scientific questions behind space exploration?
- What controls the science requirements that dictate mission architectures?

How

- ➤ The basics of planetary remote sensing what we measure and why
- How we (currently) prioritize, collect and apply scientific observations

Decadal Scale Investigations (2013-2022)

Building new worlds

How did the planets form, and what controlled their positions, compositions and water supplies?

Planetary Habitats

Do/did other planets host environments amenable to life?

Where did/does organic synthesis occur?

Workings of the solar system

How do the physical, chemical, geological and/or biological systems observed throughout the solar system inform us about our own planet, and visa versa?

So how do we answer these questions?

- Measure the compositions of a planetary surface
- Measure atmospheric properties

- Model interior structure and dynamics
- Describe geologic processes through (deep) time
- Monitor atmospheric processes loss, weather, climate

Interpret processes and conditions to understand planetary evolution

Deepening levels of inquiry need progressively detailed data sets

Data Acquisition - Step 1: Send a mission

Mercury	Venus	Mars - Mariner 5, 6,7,9	Jupiter	Saturn	Neptune/ Uranus	Dwarf Planets/
- Mariner 10 - MESSENGER - [BepiColombo]	- Mariner 2,5 - Venera 4-16 - Pioneer-Venus 1, 2 - Vega 1, 2 - Galileo - Magellan - Venus Express	- Mars 2,3 - Viking 1, 2 - Mars Global Surveyor - Pathfinder - Odyssey - Mars Express - Spirit - Opportunity - Mars Reconnaissance Orbiter - Phoenix - Curiosity	- Pioneer 10,11 - Voyager 1, 2 - Galileo - Juno	- Pioneer 11 - Voyager 1, 2 - Cassini/ Huygens	- Voyager 2	- Dawn - New Horizons - Chang'e-2 - OSIRIS-Rex - Rosetta - Hayabusa 1, 2

There is an inequity in this list...

Pink = landed

Pluto, Hubble 2012

Every bit counts

New Horizons, 2015 6.25 GB data returned

Time, technology and distance

Magellan: 3.65 terabits

 $(635 \, GB = 4.96 \, Terabits)$

Resolution: What is it and how is it controlled?

- Field of view
- Distance to target

Number of channels and band passes

Resolution requirements drive mission constraints and data volumes Orbital mission constraints drive resolution capabilities

Resolution: What is it and how is it controlled?

- Information per bit
- Field of view
- Distance to target

Number of channels and band passes

Exploring the planets with the electromagnetic spectrum Elemental composition

10-12	10 ⁻¹⁰	10 ⁻⁸	10-6	10-5	10-2	1 0 ³
meters						
Gamma	X-ray	UV	Visible	IR	Microwave	Radio

Chemical makeup of Mercury:

MESSENGER XRS and GRS instruments (FOV 12)

Exploring the planets with the electromagnetic spectrum

Atmospheric Gases, ices, organics

10-12	10-10	10-8	10-6	10-5	10-2	10 ³
meters						
Gamma	X-ray	UV	Visible	IR	Microwave	Radio

Saturn's rings, Cassini Ultraviolet

Exploring the planets with the electromagnetic spectrum Imagery, mineralogy

Exploring the planets with the electromagnetic spectrum Mineralogy

Exploring the planets with the electromagnetic spectrum

Structure (RADAR)

10-12	10-10	10-8	10-6	10 ⁻⁵		10-2	10 ³
meters							
Gamma	X-ray	UV	Visible	IR	N	Microwave	Radio

Magellan SAR Mosaic, 2025 m/pixel

SHARAD ground penetrating Radar, MRO

Exploring the planets with the electromagnetic spectrum

Communication, astronomical observations

10-12	10-10	10-8	10-6	10 ⁻⁵	10-2	10 ³
meters						
Gamma	X-ray	UV	Visible	IR	Microwave	Radio

Mission Architectures: How Data is collected

Mars Reconnaissance Orbiter

Mars Science Laboratory Curiosity

Mars Reconnaissance Orbiter Science Operations

Primary science orbit is nearly circular and "frozen"

- long term groundcoverage with ground trackspacing of ~5 km
- 12 orbits per day

Instrument platform usually pointed at nadir; can turn off angle for targeted requests.

Planning cycles are ~3 weeks

MRO Coordinated Observations ~27km CTX P15_006847_1770 **HIRISE** SP 010341 1775 RED **CRISM** FRT0000CE1D

Context Imager (CTX)

- Images with large areal extent
- 6 m/pixel
- 1 band: 0.5 0.7 µm
- Global coverage

High Resolution Imaging Science Experiment (HiRISE)

- Small scale images
- 0.25 m/pixel
- 3 bands covering wavelengths 0.4-0.6, 0.55-0.85, and 0.80-1.00 µm
- •~4% areal coverage

Compact Reconnaissance Imaging Spectrometer for Mars (CRISM)

- Hyperspectral images (6.5 nm spacing)
- 18 m/pixel (standard resolution)
- 544 wavelength bands from 0.362 3.920 µm
- •97% global coverage at low resolution,

CRISM 100 m/pixel mapping coverage, spring 2019

Mars Science Laboratory Curiosity Operations planning

Intensive "ground in the loop" operations

Collects ~850-1300 Mbits per planning cycle, not including engineering telemetry data

Reliant on Odyssey, MRO, TGO and MAVEN relays

Collection Process Example: Mars Rovers

Data return relay/processing

"Typical" Activities:

Choose 1-5 rock targets for ChemCam LIBS
Assign imaging priorities
Pick 1-2 rock targets for "contact science"
Choose next end of drive location

Collection Process Example: Mars Rovers

Instruction relay ——— Data collection

Analysis/Request formulation

Data return relay/processing

Constraints:

- Power predictions/awake time
- Handover/relay timing
- Planning complexity
- Data expected in the decisional passes
- Instrument consumables

Collection Process Example: Mars Rovers

Data collection

Data return relay/processing

Post processing:

- Quality assessments
- Imaging calibration/mosaicking
- Target localization
- Compositional data reduction

 Today, missions are carefully designed to collect the specific data products needed to investigate carefully curated science investigations within the constraints of data storage and downlink.

– What happens if we flip that paradigm?

Conclusions

- Every mission ever sent anywhere has revolutionized our understanding of our solar system
- Cumulative data return from most missions is on the order of gigabytes – dependent on mission lifespan and the data storage/transfer technology of the time
- Newer, higher data density instrumentation and mission goals in the future will require increased computing capabilities