Magellan SAR Mosaic, 2025 m/pixel




Planetary science data gathering

Why

» What are the the big, driving
scientific questions behind space
exploration?

» What controls the science
requirements that dictate mission
architectures?

How

» The basics of planetary remote
sensing - what we measure and
why

» How we (currently) prioritize,
collect and apply scientific
observations



Decadal Scale Investigations (2013-2022)

Building new worlds Planetary Habitats Workings of the solar system

How did the planets Do/did other planets How do the physical,
form, and what host environments chemical, geological
controlled their positions, amenable to life? and/or biological systems
compositions and water observed throughout the
supplies? Where did/does organic solar system inform us
synthesis occur? about our own planet, and

visa versa?



So how do we answer these questions?

Measure the compositions of a planetary surface
Measure atmospheric properties

Model interior structure and dynamics

Describe geologic processes through (deep) time
Monitor atmospheric processes - loss, weather, climate

Interpret processes and conditions to understand planetary
evolution

Deepening levels of inquiry need progressively detailed data sets



Data Acquisition — Step 1: Send a mission

Mercury Venus Mars
- Mariner 5, 6,7,9
- Mars 2,3
- Mars Global
Surveyor
- Mariner 2,5 - Odyssey
-Venera 4-16  ~Mars Express
- Mariner 10 - Pioneer-Venus
- MESSENGER 1,2 - Mars
- [BepiColombo] Reconnaissance
- Galileo Orbiter
- Magellan
- Venus Express - Mars Orbiter
Mission
- MAVEN

- Trace Gas Orbiter

There is an inequity in this list...

Jupiter

- Pioneer 10,11
- Voyager 1, 2

- Galileo

-Juno

Saturn

- Pioneer 11

Neptune/
Uranus

- Voyager 1, 2 - Voyager 2

- Cassini/

Pink = landed

Dwarf
Planets/
Small bodies

- Dawn

- New Horizons
- Chang’e-2

- OSIRIS-Rex

- Rosetta

- Hayabusa 1, 2



Pluto, Hubble 2012

Every bit counts

90° 180° 270°

. New Horizons, 2015
6.25 GB data returned

e




Time, technology and distance
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Resolution: What is it and how is it controlled?

40 km

. : Dawn’s orbits at Ceres i
Information per bit 35 m/pixel

Field of view
Distance to target

Number of channels and band passes| 13900 km
>1km/pixel

Resolution requirements drive mission constraints and data volumes
Orbital mission constraints drive resolution capabilities



Resolution: What is it and how is it controlled?

Library Mineral Reflectance Spectra
Convolved to Mastcam Bandpasses

Laboratory Spectra CRISM Spectra
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Exploring the planets with the electromagnetic spectrum
Elemental composition

1012 1010 108 10° 10° 102

meters

Gamma X-ray uv Visible IR Microwave
Magnesium/Silicon Neutron absorption

Caloris

Chemical makeup of Mercury:
MESSENGER XRS and GRS instruments (FOV 12 )

103

Radio



Exploring the planets with the electromagnetic spectrum
Atmospheric Gases, ices, organics

1012 10-10 108 106 105 102 103
meters
Gamma X-ray uv Visible IR Microwave Radio

Saturn’s rings, Cassini Ultraviolet
Imaging Spectrometer
(FOV ~3.6")




Exploring the planets with the electromagnetic spectrum
Imagery, mineralogy

1012 1010 108 106 10° 102 103
meters
Gamma X-ray uv Visible IR Microwave Radio

HiRISE observation of MSL Cur|o§’t§
30 cm/pixel




Exploring the planets with the electromagnetic spectrum

10—12 10—10
meters
Gamma  X-ray

3.1 um
absorption
band depth

Mineralogy
108 106 105 102
uv Visible IR Microwave

2.72 ym
absorption
band depth

340°E

Lambert conformal conical projection
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Ceres mineralogy, Singh et al., 2019




Exploring the planets with the electromagnetic spectrum
Structure (RADAR)

1012 1010 108 106 10° 102 103
meters
Gamma X-ray uv Visible IR Microwave Radio

Martian Polar Cap:
Buried Layers Revealed by Radar Vision

e

‘Water-ice layers Dust layers
(dark deposits) (bright deposits)

Magellan SAR Mosaic, 2025 m/pixel SHARAD ground penetrating Radar, MRO



Exploring the planets with the electromagnetic spectrum

Communication, astronomical observations

1012 1010 108 106 10° 102 103
meters
Gamma X-ray uv Visible IR Microwave Radio
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Mission Architectures: How Data is collected

Mars Reconnaissance Orbiter Mars Science Laboratory Curiosity



Mars Reconnaissance Orbiter Science Operations

Primary science orbit is . ELECTROMAGNETIC SPECTRUM

nearly circularand "frozen”

15 meters 15 microns LS microns

- long term ground SHARAD MCS CRISM
coverage with ground track HiRISE
spacing of ~5 km MARCI
- 12 orbits per day cTx

Instrument platform usually
pointed at nadir; can turn
off angle for targeted
requests.

Planning cycles are ~3
weeks



MRO Coordinated Observations

Context Imager (CTX)
CTX * Images with large areal extent
P15_006847_1770 ° 6 m/plxel
__________________________ *1band: 0.5 - 0.7 ym
h g HiRISE » Global coverage

| SP_010341_1775_RED

-
-

High Resolution Imaging Science Experiment (HiRISE)
* Small scale images
* 0.25 m/pixel
« 3 bands covering wavelengths 0.4-0.6, 0.55-0.85,
and 0.80-1.00 ym
: CRISM ~4% areal coverage

%  FRTOOO0CE1D
Compact Reconnaissance Imaging Spectrometer for

Mars (CRISM)
* Hyperspectral images (6.5 nm spacing)
» 18 m/pixel (standard resolution)
* 544 wavelength bands from 0.362 - 3.920 ym
*O7% global coverage at low resolution, 18
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Mars Science Laboratory Curiosity Operations planning

Intensive “ground in the loop”
operations

Collects ~850-1300 Mbits per
planning cycle, not including
engineering telemetry data

Reliant on Odyssey, MRO, TGO
and MAVEN relays




Collection Process Example: Mars Rovers

/ Instruction relay ——— Data collection

-—

Analysis/Request formulation = Data return
A relay/processing

“Typical” Activities:

Choose 1-5 rock targets for
ChemCam LIBS

Assign imaging priorities
Pick 1-2 rock targets for
“contact science”

Choose next end of drive
location



Collection Process Example: Mars Rovers

Instruction relay Data collection

Analysis/Request formulation Data return
relay/processing
Constraints:

 Power predictions/awake

POST-DRIVE time
SCIENCE

* Handover/relay timing
* Planning complexity
SCERCE « Data expected in the
decisional passes
* |nstrument consumables




Collection Process Example: Mars Rovers

Instruction relay —— Data collection

Analysis/Request formulation = Data return
relay/processing

Post processing;:

* Quality assessments

* Imaging
calibration/mosaicking

* Target localization

 Compositional data reduction




* Today, missions are carefully designed to collect the specific
data products needed to investigate carefully curated

science investigations within the constraints of data storage
and downlink.

— What happens if we flip that paradigm?



Conclusions

* Every mission ever sent anywhere has revolutionized our
understanding of our solar system

 Cumulative data return from most missions is on the order
of gigabytes - dependent on mission lifespan and the data
storage/transfer technology of the time

* Newer, higher data density instrumentation and mission
goals in the future will require increased computing
capabilities



