

Introduction to Imaging Spectroscopy

Dr. David R. Thompson Jet Propulsion Laboratory, Imaging Spectroscopy Group 27 August, 2019

Agenda

Imaging spectroscopy measurement and instruments Example missions, phenomena and results for Earth and Planetary exploration Algorithms: easy and hard, monolithic and parallelizable, stochastic and probabilistic

The nebulae promise: Increase the *effective science yield* for a given bandwidth limit

Remote science has stringent requirements

High accuracy: e.g. sub-percent surface reflectance

Quantitative physical interpretability: Output reported in physical units of quantities measurable *in situ*, and traceable to rigorous physical models

Principled uncertainty propagation: Respect input noise, report confidence intervals

Generalizability: should apply across different new locales, new spatiotemporal sampling

Dramatis Persone

Measurement process – 100s of parallel spectrometers

Imaging spectroscopy vs. multiband analysis

Multiband

Typically built with optical filters

1-10s of bands

Image-space (morphological) analyses

Band math, thresholds, trees

Often mathematically underdetermined

Analyses are often qualitative

Empirical modeling

Imaging Spectroscopy

Uses dispersive elements (e.g. gratings)

100s of channels

Spectroscopy using each pixel independently

Feature fitting and shape matching

Often mathematically overdetermined

Quantitative measurement with uncertainties

Empirical or physics-based modeling

Dolomite CaMg(CO3)2

010[(OH)8

2200

2500

Imaging spectroscopy at JPL

First Imaging Spectrometer AIS flights in 1982

AVIRIS imaging spectrometer >1000 refereed journal articles

NIMS imaging spectrometer to Jupiter

VIMS imaging spectrometer to Saturn

MICAS Miniature Integrated Camera and Imaging Spectrometer to Comet

Hyperion-Earth, CRISM-Mars and ARTEMIS-Earth imaging spectrometers (gratings, designs, calibration, science)

NASA Moon Mineralogy Mapper (M3)

> 7 Airborne/Rover-type Imaging Spectrometer operating at cryogenic temperature and in a vacuum (2005-2015)

Lunar Trailblazer Mission

Faustini crater PSR from terrain-scattered light (Cisnaros et al., 2016)

OH/H2O absorption

(blue) at 3-µm from M3

(Pieters et al., 2009)

PI: Bethany Ehlmann, Caltech

Map of lunar water from 85 degree latitude

From [Milliken and Li, 2017]

Agriculture and Terrestrial Ecosystems

Geology, Soils, Surface Composition

Example: Geologic Mapping via absorption fitting

Salton Sea, CA (AVIRIS instrument)

Courtesy NASA/JPL/Roger Clark

Salton Sea, CA (AVIRIS instrument)

Cloud optical properties at high spatial resolution

Important for sub-gridsquare GCM parameterizations and glaciation rates of mixed clouds

Cloud optical properties at high spatial resolution

[Thompson et al., JGR 2016]

Tan and Storelvmo, Journal of the Atmospheric Sciences, 2016

RGB Image

lce Liquid Vapor

Localized greenhouse sources

CH₄ in California

[Duren et al. *Nature,* in press); Thorpe et al., 2016; Thompson et al. 2015 & 2016]

Natural CH₄ emissions in the Arctic

Elder, Thompson, et al. [in preparation]

L0: Raw

Numbers

Digital

Typical data volumes

~15 Tb/day

possible

per day of

L2 data

L3: ? GB per Tetracorder 3.3 product Iron Oxides acquisition second Reflectance Spectrum 0.5 L2: 3 GB per 0.4 Reflecta acquisition is easily 0.3 acquisition 0.2 second 0.1 1000 1500 Wavelength (nm) 2000 2500 500 over 50 TB of data **Radiance Spectrum** L1: 3 GB per uncompressed L0acquisition second 2000 500 1000 1500 Wavelength (nm) 2500 Raw Spectrum 5000 L0: 3 GB per Value (DN) 4000 acquisition 3000 second 2000 1000

100

200 3 Band Number

300

400

Cuprite, Nevada AVIRIS 1995 Data USGS

Clark & Swayze

Hematite

Hematite Large-grained hematite

nanocrystalline

Fine-grained to medium-grained Band arithmetic or dot products (trivial)

Closed form linear algebra (fast)

Iterative nonlinear optimization (slower)

*Possible external dependencies

Algorithms

Fit reflectance signatures **Band ratios** Least squares **Matched filter** M.A.P model inversion

Calculate surface signal

Topographic corrections*

Iterative thermal estimation*

PSF Corrections

Radiation correction

Bad pixel inference

Radiometric calibration*

M.A.P. model inversion*

Calibration

I/F division (standard)

Compression Lossless 4x in real time

Iterative model inversion methods

[Thompson et al., Remote Sensing of Environment 2018, 2019a, 2019b]

Parallelizability

Global scale

 L4+ Planetary Maps and Global Models at low res

Multiple scenes, one domain

- Region-wide Analyses
- Time series
- Possibly lower spatial resolution

Multiple spectra, one scene

- Region of interest analysis
- Some atmospheric studies

Independent spectra or aggregated spectra

• ALL standard products

AVIRIS-C RGB and H₂O field from [Thompson et al., *Surveys in Geophys.* 2019]

Jet Propulsion Laboratory

California Institute of Technology

jpl.nasa.gov

Delta-X EV-S mission PI: Marc Simard

Urgency: If ignored, Relative Sea Level Rise (RSLR) will very soon have devastating consequences on the livelihood of the half billion people that live in these low-lying coastal regions. Nearly all the world's major river deltas are threatened along with the services they provide: flood protection, carbon sequestration, biodiversity and food supply.

Delta-X Science Question: Will river deltas completely drown, or some parts of these deltas accumulate sufficient sediments and produce enough plants to keep pace with RSLR ?

08/28/2019

david.r.thompson@jpl.nasa.gov

NASA's CORAL Mission

Thompson et al., *Remote Sensing of Environment* 2017

Hochberg et al., *Remote Sensing of Environment* 2003 08/28/2019

david.r.thompson@jpl.nasa.gov

Water-leaving Reflectance

Rb

Benthic Cover

Depth

Agenda

- Overview and upcoming missions
- **Deep Dive 1:** Instrument characterization
- Deep Dive 2: CH₄ leaks, other greenhouse point sources
- Deep Dive 3: Optimal Estimation for surface/atmosphere retrievals

PSF Characterization

Subtle tails of the Focal Plane point spread function can:

- Disrupt fine atmospheric structure
- Create unwanted spatial blur

Measurement model

Posit the functional forms of the CRF and SRF Optimize free parameters to match observation

1.

Method

3. Optimize free parameters to match observations via:

4. Correct future data using the following linear transformation:

Find well-constrained properties of scenes' true radiance

$$L_{corr} = ((C^{T})^{+} ((S^{T})^{+} L_{meas}^{T})^{T})^{T}$$

Here, ⁺ represents the Moore-Penrose inverse, e.g.

$$C^{+} = (C^{T} C)^{-1} C^{T}$$
 $C^{+}C = I$

Methods include:

- Comparisons vs. lab measurements
- Pressure altitude predictions vs. DEMs
- Surface reflectance fidelity

Results from Thompson et al., RSE 2018

Agenda

- Overview and upcoming missions
- **Deep Dive 1:** Instrument characterization
- Deep Dive 2: CH₄ leaks, other greenhouse point sources
- Deep Dive 3: Optimal Estimation for surface/atmosphere retrievals

Localized greenhouse sources

Fugitive CH₄ emissions at Four Corners, NM

Frankenberg, Thorpe, Thompson et al., PNAS 2016

Aliso canyon gas storage leak

EO-1 Spacecraft at LEO, 1/1/2016

ER-2 at 6.6 km altitude, 1/12/2016

Thompson et al., *Geophys. Res. Lett.* (2016)

CH₄ in California, (in review), Thorpe et al. (2015), Thompson et al. (2015)

08/28/2019

08/28/2019

Algorithms for CH₄ detection

The matched filter aims to detect a perturbing signal **t** against a background distribution defined by a mean vector and covariance matrix, μ, Σ

For a radiance vector **x** it discriminates two hypotheses:

$$H_0: \mathbf{x} \sim \mathcal{N}(\mu, \Sigma) \qquad H_1: \mathbf{x} \sim \mathcal{N}(\mu + \alpha \mathbf{t}, \Sigma)$$
(pure background) (background plus target)

08/28/2019

Algorithms for CH₄ detection

The matched filter is written:

$$\hat{\alpha}(\mathbf{x}) = \frac{(\mathbf{x} - \mu)^T \Sigma^{-1} \mathbf{t}}{\mathbf{t}^T \Sigma^{-1} \mathbf{t}}$$

For interpretability, the target signature **t** is defined as the change in radiance caused by an additional unit absorption of CH_4 above background.

$$\mathbf{t} = \frac{\partial \mathbf{x}}{\partial \ell} = -\mu e^{-\kappa \ell} \kappa = -\mu \kappa$$
Absorption path length
Absorption
Coefficient

08/28/2019

Challenge #1: Multi-modality

The background distribution is seldom uniform. This can lead to undesirable "clutter" effects and reduction of sensitivity in general.

Sources of nonuniformity include:

- Variability in surface substrate materials
- Structured instrument effects, e.g. calibrations for pushbroom spectrometers.

Multi-modal covariance options

Original data cube

Partition spatially (Funk et al., 2001)

Pushbroom column partitioning (Thompson et al.,

Combined pushbroom and spatial partitioning

Multi-modal covariance estimates

Partitioning that accounts for instrument effects can mitigate deviations from calibration model assumptions

Greenhouse gas point source retrievals improved by columnwise covariance estimattion (Thompson et al., 2015)

08/28/2019

Multi-modal covariance estimates

Coupling k-means background clustering with the column-wise MF provides improved robustness to background changes

AVIRIS-NG Four Corners 2015

Column-wise Matched Filter (MF) Column-wise MF with multi-modal background model

08/28/2019 david.r.thompson@jpl.nasa.gov

Challenge #2: Sample sizes

- As the number of partitions increases, it becomes increasingly difficult to estimate the covariance matrix reliably.
- This is also an issue for small flightlines.
- Poor covariance estimation reduces sensitivity.

Approach

Shrinkage estimation regularizes the sample covariance matrix, shifting it toward a stable prior (such as a diagonal covariance matrix).

We adopt a method from Theiler et al. (Proc. SPIE, 2012) to select the optimal weighting using a closed form for cross-validation error

Remote wind speed estimation

2 3

4 5 6 7

Plume Width (m)

Wind Speed (m/s) Large Eddy Simulations reveal a stochastic relationship between plume shape and windspeed, enabling flux estimates (Jongaramrungruang et al., in prep.)

8 9 10

Agenda

- Overview and upcoming missions
- **Deep Dive 1:** Instrument characterization
- Deep Dive 2: CH₄ leaks, other greenhouse point sources
- Deep Dive 3: Optimal Estimation for surface/atmosphere retrievals

From radiance to reflectance

GE 1266/200109 npson@jpl.nasa.gov

"AVIRIS Classic" imaging spectrometer, visible wavelengths

Retrieved Water vapor [Thompson et al., *Surv. Geohysics,* 2018]

Global spectroscopy missions are an atmospheric correction challenge

Annual average AOD

08/28/2019

david.r.thompson@jpl.nasa.gov

Thompson et al., (in review)

Global spectroscopy missions are an atmospheric correction challenge

08/28/2019

david.r.thompson@jpl.nasa.gov

Thompson et al., (in review)

Optimal Estimation Theory [Rodgers 2000]: Simultaneous estimation of surface and atmosphere

- A true spectroscopic retrieval that can exploit information distributed across the spectrum, helping to disentangle surface and atmosphere
- A rigorous probabilistic formulation incorporates prior knowledge via Bayes' rule
- Comprehensive uncertainty estimates can inform downstream analyses and global maps
- Flexible state vectors that might be more robust for difficult observing conditions
- Elegant, conceptually simple 1-step estimation

The "forward problem"

08/28/2019 david.r.thompson@jpl.nasa.gov

The "inverse problem"

08/28/2019 david.r.thompson@jpl.nasa.gov

Ga 20/20/20/09/npson@jpl.nasa.gov

Maximum A Posteriori solution

$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{y})}$$

Maximum A Posteriori solution

$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{y})}$$

The *Maximum A Posteriori* estimation is equivalent to the optimization:

$$\chi^{2}(\mathbf{x}) = (\mathbf{F}(\mathbf{x}) - \mathbf{y})^{T} \mathbf{S}_{\epsilon}^{-1} (\mathbf{F}(\mathbf{x}) - \mathbf{y}) + (\mathbf{x} - \mathbf{x}_{a})^{T} \mathbf{S}_{a}^{-1} (\mathbf{x} - \mathbf{x}_{a})$$
Cost
Model match to
Bayesian prior
measurement

... we can solve it by conjugate gradient descent.

Maximum A Posteriori estimation

Iterative simultaneous estimation of atmosphere and surface

Case study

[Thompson et al., *Remote Sensing of Environment* 2018]

- In-situ AOD via Reagan sunphotometers
- In-situ surface reflectance via ASD Fieldspec

Ivanpah Playa

Jet Propulsion Laboratory

California Institute of

08/28/2019 From Thompson et al., RSE 2018. david.r.thompson@jpl.nasa.gov

Model components

Statistical, fit to data Retrieved in the inversion

Instrument: AVIRIS-NG

- Instrument model with Wavelength- and signal-dependent SNR
- Photon shot & read noise
- Uncorrelated calibration uncertainty
- Systematic calibration / RT uncertainty

Atmosphere: MODTRAN 6.0 RTM

- DISORT MS, Correlated-k
- Rural aerosol model
- broad prior uncertainties
- Unmodeled unknowns, including H₂O absorption coefficients
- H₂O, AOD retrieved

Surface: Multi-component Multivariate Gaussians

- Prior based on universal library, highly regularized to permit accurate retrieval of arbitrary shapes
- Reflectance estimated independently in every channel

08/28/2019

Reflectance estimate vs. in situ

[Thompson et al., Remote Sensing of Environment 2018]

71

Posterior uncertainty compared to actual discrepancies

[Thompson et al., Remote Sensing of Environment 2018]

High aerosol loading in India campaign

08/28/2019

High aerosol loading in India campaign

"Averaging Kernels" for H₂O, and absorbing and scattering aerosol particles

High aerosol loading in India campaign

Right: A dataset of 29 flightlines shows uniform improvements in spectral quality metrics vis a vis the AVIRIS-NG standard reflectance product. AOD estimates align with MODIS AOD retrievals from the same day (correlation coefficient r = 0.83). Left: different surfaces provide varying levels of aerosol information for the retrieval. Green vegetation is particularly well-constrained We use the most confident 5% of retrievals to form the flightline-wide estimate.

08/28/2019 david.r.thompson@jpl.nasa.gov

Aerosol mapping examples (Hawaii campaign)

AVIRIS-C f170127t01p00r16 (subset, visible bands)

08/28/2019 david.r.thompson@jpl.nasa.gov

Combined estimate of H₂O vapor, AOT, surface reflectance and

Maximum A Posteriori vs. MCMC

With due thanks to:

- Kevin Bowman (JPL), for much of the source material in these slides
- **Clive D. Rogers,** for theoretical foundations, approach and notation (e.g. *Inverse Methods for Atmospheric Sounding, Theory and Practice*, 2000).
- NASA Earth Science for sponsorship of AVIRIS-NG and the AVIRIS-NG India investigation and analysis.
- The JPL Research and Technology Development and NASA Center Innovation Fund Programs
- The JPL Office of Chief Scientist and Technologist
- Other coinvestigators, coauthors and colleagues including Amy Braverman, Jonathan Hobbs, Robert Spurr, Steven Massie, Bruce Kindel, Manoj Mishra, et cetera.

Backup

08/28/2019 david.r.thompson@jpl.nasa.gov Salix nigra/Forest
Colocasia esculenta
Polygonum punctatum/Forbs
Senesced Nelumbo/Floating Vegetation
Phragmites australis
Other Grasses

Coastal ecosystems: wetland [Daniel Jensen, *TGARS* 2018 Control of Water" 8x SRTD

	Nelumbo	Polygonu m/ Forbs	Colocasia	Salix/ Forest	Grasses	
In Situ Points	50	19	18	30	16	
Correct Points	46	10	13	23	8	
Percent Correct	92.0	52.6	72.2	76.7	50.0	

08/28/2019

Intrinsic dimensionality

- The degrees of freedom in a process under study
- Quantifies the measurable diversity in a dataset

08/28/2019

david.r.thompson@jpl.nasa.gov

Laplacian Eigenmap code via Kye Taylor, Mathworks file exchange

Dimensionality estimates must account for measurement noise

High Intrinsic Dimensionality

NASA

08/28/2009 / NASA / Sierra Nevada Photo by DAVID ILIFF. License: CC-BY-SA 3.0 david.r.thompson@jpl.nasa.gov

Variability due to measurement noise vs. unknown state parameters

Measurement noise (instrument effects)

- Photon noise
- Read noise
- Dark current noise

Unknown parameters in the observation system

- Sky view factor
- H₂O absorption coefficient intensity
- Systematic radiative transfer error
- Uncorrelated radiative transfer error

Measuring subpixel coverage

08/28/2019

83/28/2000ppson@jpl.nasa.gov Yosemite Mosaic 1130503 (no color blending applied) Liquo/Ice Melting

Clouds 🍂

Half dome

[Thompson et al., RSE 2015

1 Million

CAN SELLA

08/28/2019 david.r.thompson@jpl.nasa.gov

Coincident multi-aircraft measurement

08/28/2019 david.r.thompson@jpl.nasa.gov

In situ corroborates remote data

92

Remote sensing of cloud phase

david.r.thompson@jpl.nasa.gov

95

Example of b_b endmember library

08/28/2019

Example of K_d endmember library

08/28/2019

Case studies

- Instrument characterization PSF fitting
- Gases CH₄ monitoring
- Liquids Bathymetry and Benthos
- Solids- Optimal Estimation

Performance drivers

- **Stability:** Careful temperature control and low-noise instrument electronics
- **Uniformity:** Single-detector designs, curved gratings for low-distortion and high throughput
- Alignment: Micron-level adjustment of optical components
- **Calibration:** Accurate characterization of spectral response

david.r.thompson@jpl.nasa.gov

Grating

Optimize via Levenberg Maquardt, minimizing:

08/28/2019

Posit the relation [Maritorena et al., 1994]:

$$\operatorname{Rrs}_{0} = \operatorname{R_{inf}}_{\uparrow} + (\operatorname{R_{b}}_{-} - \operatorname{R_{inf}^{-2K_{d}}})^{d} \operatorname{e}_{\text{Depth}}$$

Posit the relation [Maritorena et al., 1994]:

$$\operatorname{Rrs}_{0} = \operatorname{R_{inf}}_{\uparrow} + (\operatorname{R_{b}}_{-} - \operatorname{R_{inf}}^{-2K})^{d} \operatorname{e}_{\text{Depth}}$$

Problem: underdetermined

 K_d , bb, and R_b yield (3N + 1) parameters for just N measurements

Posit the relation [Maritorena et al., 1994]:

$$\operatorname{Rrs}_{0} = \operatorname{R_{inf}}_{\uparrow} + (\operatorname{R_{b}}_{-} - \operatorname{R_{inf}^{-2K}})^{d} \operatorname{e}_{\text{Depth}}$$

Problem: underdetermined

 K_d , bb, and R_b yield (3N + 1) parameters for just N measurements

Solution: represent as linear mixtures

Parameterize K_d , bb, and R_b as nonnegative linear combinations of endmember spectra, and retrieve mixing coefficients (~20 DOF)

Airborne (2019 – 2024): Delta-X

Urgency: If ignored, Relative Sea LevePRisea (RSSR) and (dPLs) bon have devastating consequences on the livelihood of the half billion people that live in these low-lying coastal regions. Nearly all the world's major river deltas are threatened along with the services they provide: flood protection, carbon sequestration, biodiversity and food supply.

Delta-X Science Question: Will river deltas completely drown, or some parts of these deltas accumulate sufficient sediments and produce enough plants to keep pace with RSLR ?

08/28/2019

Airborne (2016 – 2019): CORAL

NASA

Hochberg et al., *Remote Sensing of Environment* 2003 08/28/2019

david.r.thompson@jpl.nasa.gov

Thompson et al., *Remote Sensing of Environment* 2017

> 10 5

Water-leaving Reflectance

Rb

Benthic Cover

Depth

Airborne (2020 - 2024): S-MODE

PI: Tom Farrar, WHOI

08/28/2019 david.r.thompson@jpl.nasa.gov

08/28/2019 david.r.thompson@jpl.nasa.gov

08/28/2019 david.r.thompson@jpl.nasa.gov

david.r.thompson@jpl.nasa.gov

R_{rs} vs. bottom reflectance result

08/28/2019 david r thompson@

david.r.thompson@jpl.nasa.gov