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Outline

e Evidence of cryospheric response to oceans
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Components of an ice sheet .
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* slow-flowing interior (~10 m/yr) T p .
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lce streams and outlet glaciers

e sections of fast flowing ice ~50
km wide

e now thought to be crucial in
dynamics of ice sheets

Weddell
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Antarctic ice-sheet loss driven by basal melting

of ice shelves

H. D. Pritchard’, S. R. M. Ligtenberg?, H. A. Fricker®, D. G. Vaughan', M. R. van den Broeke? & L. Padman*
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Larsen ice shelves

1986—Q3—Ol y B
* collapse of ice shelf A in 1995 ‘i =
and B in 2002 i

e meltwater-driven fracture
understood

MacAyeal and others 2003
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Larsen ice shelves
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Grounding line retreat

Fast Recession of a West

Antarctic Glacier
E. ). Rignot

o

Hinge-Line Retreat (km)

KISS short course Sept. 2013 Slide number 8/37



Inland thinning of the Amundsen Sea sector, West Antarctica

Andrew Shepherd, Duncan J. Wingham, and Justin A. D. Mansley

Links GL retreat to mass loss

Suggests that mass loss is
limited to ice streams
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Timing of Recent Accelerations of Pine Island Glacier, Antarctica

lan Joughin,' Eric Rignot,] Christine E. F’\osr;mcma,2 Baerbel K. Lu:::ch:itta,,3

and Jennifer Bohlander”

Thinning is caused by increased

ice flow
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Accelerating response

Wingham and others (2009)
use cross-calibrated ERS-2

and ENVISAT radar altimetry g

to extend time series from
1995 to 2008

thinning rates increased
fourfold

1995

Elevation Change (mi
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Accelerating response

e Jenkins and others (2010)
identify a bedrock ridge under
the ice shelf ~40 km from the
current grounding line

e observed GL retreat rates
consistent with GL occupying
ridge in mid 1990s

e Retreat has been consistent
since 1990s and accelerated
through 2000s - 0.95 £0.09
km/yr with peak 2.8 + 0.7
km/yr

Park and others (2013)
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Outline

e The Marine Ice Sheet Instability
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Marine ice-sheet instability

(a)

(k)

floating ice shelf

(e}
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West Antarctic ice sheet and CO, greenhouse

effect: a threat of disaster
J. H. Mercer

Sheet

Terence J. Hughes

University of Maine - Main, terryhughes@maine.edu S0
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Nature Vol. 271 26 January 1978

The Weak Underbelly of the West Antarctic Ice-

J. Glac. 1981

Cross-section through West Antarctica
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Ice sheet grounding line dynamics: Steady states,
stability, and hysteresis

Christian Schoof®
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Faunal evidence for a late quaternary trans-Antarctic seaway

DAVID K. A. BARNES and CLAUS-DIETER HILLENBRAND
British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET, UK
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Evolution of the steady grounding line position as a function of
the horizontal mesh extension. Black circles (gray circles)
represent results obtained for simulations on the outward

(return) path. Dashed line depicts results obtained by boundary

layer theory (Durand et al_, 2009)
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Outline

* Flowline modelling of Pine Island Glacier
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Flowline modelling of PIG

e Aim to use simple model of PIG
to investigate behaviour from
1900 to 2200

* The model is cheap to run so
that fine resolution is not an
issue

* Also means 1000s experiments
are possible so that can use

anceamhlac +A accacec affartec nf
CIIDGWCIITINIGLCO LUV UJDJIDUWUJIDJI CliITGCOwilo Vi

parameter uncertainty

e Joughin et al (2010) use a 2-d.
version of the model and find
limited GL retreat
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Melt model

e Box model of sub-shelf
processes used to generate
mean melt rates (Olbers and
Hellmer 2010)

e Temperature and salinity
conserved; 3-equation melt
model; fluxes found as a
function of density

differences o e w yeeems
 Means in two sub-shelf L

boxes used to constrain N RE

empirical relation developed <o -

by Walker and others (2008)

e Generates high melt rates
close to GL as suggested by

observations
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A e ma L[ . _ \I"\ \ l;h C NnNaramntnrc
A = rate 1actor (a measure ot val vi SO/ MAldllIT LTI O
how easily deformable the ice

Minimax Latin Hypercube sampling was used
is, determined by

to obtain 5000 combinations of these inputs

temperature). (i.e. we ran an ensemble of 5000 simulations)
Two parameters jointly [nput name  Units Min. value  Max. value
determine the “surface” mass A Pa™ yr™  3.1x107%  1.7x107°
balance profile (includesa Cupi m yr~! 0.5 5.0
contribution from tributaries). Cump2 - 0 ]
Cpy Pasm™' | x 10% 5% 107
| / Cpa Pasm™ 0 [ x 1010
Two parameters determine the \\% km 30) 70
profile of basal traction Cy - 0.9 1.3
coefficient.
A lateral drag One parameter allows the initial
parameterisation is used (year 1900) thickness profile to
with channel width W vary
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Results

Likelihood proceedure to
accept or reject members
based on fit to observed

thinning, grounding |

ine

positions and velocity

Grey are rejected; blue to red
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Outline

 Development and testing of an adaptive mesh
model and application to PIG
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Bisicles ice sheet model

e Specifically designed for GL
problems Hely

e Based on CHOMBO adaptive-mesh
refinement developed by Lawrence
Livermore National Lab.

* Uses a vertically-integrated form of (8) Example block steuctured mesh
the stress equations proposed by -
Schoof and Hindmarsh (2010) A
known as L1 L2 I Filrig %tf } —II{I
—
* |Includes all stress terms but is IS
. ; .
vertically integrated s
. FEUr(p+ el — Lel)
* CHOMBO ensures conservation T
between grids and offers massive F{v(p — bel)
parallelization

KISS short course Sept. 2013 Slide number 25/37



BISICLES

200

* Trial application to Pine
Island Glacier

150
I

e Simulation using
reasonable melt increase
of 50 m/yr

100

e Results dependent on
resolution from single level
(5km) to six levelis (~150 m)

'L

e Confirms need for sub-km
resolution

50 100 150

Colours refer to velocity
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Outline

e Application to West Antarctica: initialization and
climate forcing
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Experimental design

e Coupled problem but no such
coupled model exists

Maud
Land

o
£
&
c
(%
o

e Use a chain of models from
global AOGCMs — regional

ocean and atmosphere models
— ice sheet model

e Connelly and Bracewell (2007) S
show HadCM3 and ECHAMS to &
do well for Antarctica )l

0 1000 2000

e Consider only West Antarctica -

180°

suy onoJejuesuelL @
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. SRES scenarios A1B

Experlmenta| and E1 with

design AOGCMS
HadCM3 | ECHAMS

0
1850

iz Concentration (ppmwv)

§ B2 58838 8 8

Snowfall - regional Melt - regional ocean
atmospheric modelling modelling
RACMO?2 LMDZ4 BRIOS FESOM
(Utrecht) (Grenoble) (AWI) (AWI)

[Anomalies against 1980 to 1989]
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Twenty-first-century warming of a large Antarctic
ice-shelf cavity by a redirected coastal current

Hartmut I. Hellmer', Frank Kauker!, Ralph Timmermann', Jirgen Determann’ & Jamie Rae”

Regional Southern
Ocean model forced
using AOGCM

output.

Latitude north

| _____ | 1 I |
20 -18 16 -14 -12 10 08 06 04 -02 -00 (°C)
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No
O

Ocean for —

d

e Warm water intrusion reported by
Hellmer and others (2012) for
BRIOS also in FESOM for Ronne-
Filchner
e Leads to 10-20 fold increase in melt
e Similar phenomenon for Ross
shelf after 2100 (FESOM
Ellsworth Pensacola Mtns Shackleton Range
12000 | 12000| 12000 i 12000
?t 10000 = . 10000 ! 10000
5 e Ronne-Filchner ice shelf | eo00 ﬂ‘ qur -
; 6000 6000 el 8000 L e000
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0 m“_mwngw. 0 ) s bfumiidiniedls 0
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Ocean forcing — smaller ic
e FESOM and BRIOS do not represent
smaller shelves well 5

B (m/year)

Use index of coastal warming and

convert to melt anomaly using 15
empirical relation (e.g., Jacobs and

Rignot 2002)

Warming of 1 to 2 °C or 10-20 m/yr
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Grounding lines

control, 2200
— FES/A1B/HA3/noSMB,2010,20
—— FES/A1B/HA3/noSMB,2200
— 1980
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[ 4

Background is the
initial velocity field

KEY -
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some drift
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Deglaciation of Pine Island Glacier
and Smith Glaciers

Thwaites shows no retreat related
to lack of buttressing?

Similar to recent GL observations
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Summar\y/

Increased outflow is enough to compensate increased
snowfall

Sea level rise is predicted as -5 to 80 mm by 2200 depending
on forcing (i.e., small)

Sea level rise is limited because
e GL retreat occurs late in the model run (c.f. ocean forcing)

e Areas that retreat do not have much ice above buoyancy
(so little effect or SLR) and/or

e Large retreat limited to narrow channels (e.g., Pine Island)
Sea level rise appears to continue to increase beyond 2200
Omits East Antarctica
Fuller estimate requires coupling to regional ocean model
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Antarctic mass balance

 interior thickening related to changes in snowfall

« coastal thinning in WAIS (Pine Island, Smith and
Thwaites Glaciers) and EAIS (Cook and Totten

Glaciers)
» close correspondence to ice velocity (ice streams)
o
T °r
— i Pine |
o i Islond |
g 6 Thwoites
R |
(&)
c - (L. Totten
o 4r i 7
Shepherd and s | o cook
Wingham 2007 ks o[ _'
5 S e ez Others
Pritchard and ol o
others 2009 1992 1994 1996 1998 2000 2002 2004
Year
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Recent dramatic thinning of largest West Antarctic ice stream
triggered by oceans

Antony J. Payne,' Andreas Vieli,' Andrew P. Shepherd,” Duncan J. Wingham,’
and Eric Rignot”

Demonstrated that GL retreat,
flow acceleration and thinning
all linked and caused by
increased ice shelf melt
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Derived basal traction coeff. |

al condit

e Observed ice sheet geometry

ns

e Use methods based on Lagrange
multipliers to find ice viscocity and
basal traction consistent with observed
velocities

 Evolve ice sheet for 50 years to allow
noise to relax away

 Employ 3 levels of refinement from 5
kmto 612 m
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