Resistive superconducting films for photonsensing devices

conventional superconductivity in 'bad metals'

Teun Klapwijk, Kavli Institute of Nanoscience, Delft

Thanks to the members of my group at Delft and my collaborators at SRON

Delft University of Technology

Electrodynamics of the superconductor

Barends et al, Appl.Phys. Lett.92,223502(2008) **T**UDelft

Recombination rates; disorderdependent $\frac{\tau_0}{\tau_r(\Delta)} = \sqrt{\pi} \left(\frac{2\Delta}{kT_c}\right)^{5/2} \sqrt{\frac{T}{T_c}} e^{-\Delta/kT} = \frac{(2\Delta)^2}{(kT_c)^3} \frac{n_{qp}}{2N^a(0)}$

1.0

(rad) θ

0.0

(c)

R.Barends et al, PRL 100, 257002(2008); PRB 79, 020509 (2009)

Power dependence quality factor NbTiN

Materials in use NbN, NbTiN, TiN

- Hot-electron bolometers (HEB's): 4 nm thick, R=100 Ω /sq, ρ =250 $\mu\Omega$ cm
- Superconducting single photon detectors (SSPD's): >4 nm thick, R≤100Ω/sq, ρ≤250µΩcm, narrow: 90 nm; uniformity
- Microwave kinetic inductance detectors (MKIDs): Al, Ta, Nb, NbN, NbTiN, TiN, in search of optimal parameters: 60 nm thick, R=10Ω/sq, ρ=100µΩcm, uniformity

Conventional superconductivity in 'bad metals'

Superconductor single-electron detector (a)

Lupascu et al, arXiv; Rosticher et al, to be publ.

double peak

200

400

time (ns)

0.0

I (mA)

600

OFF

ON

800

sw

0.1

1000

Spatial pattern of optical and electron QE in NbN and NbTiN

Dorenbos et al, APL **93**, 131101(2008): NbTiN

Rosticher et al, to be published

Thin NbN films and quench-condensed films; superconductor-insulator transition

Superconductor differs from a resistive metal !!

- Electron temperature vs distribution function
- Resistance *not* simply due to single-electron backscattering processes, but:
 - Current conversion processes (static)
 - Phase-slip/flux-flow (dynamic)

Microwave impedance????

Resistance of a NSN structure: static resistance of S (temperature close to Tc)

Boogaard et al, 2004?

Electrodynamics of superconducting thin films $k_F l = 1$

$$\begin{split} \frac{\sigma_1}{\sigma_N} &= \frac{2}{\hbar\omega} \int_{\Delta}^{\infty} [f(E) - f(E + \hbar\omega)] g_1(E) dE \\ &+ \frac{1}{\hbar\omega} \int_{\Delta - \hbar\omega}^{-\Delta} [1 - 2f(E + \hbar\omega)] g_1(E) dE \\ \frac{\sigma_2}{\sigma_N} &= \frac{1}{\hbar\omega} \int_{\max(\Delta - \hbar\omega, -\Delta)}^{\Delta} [1 - 2f(E + \hbar\omega)] g_2(E) dE \end{split}$$

$$g_1(E) = \left(1 + \frac{\Delta^2}{E(E+\hbar\omega)}\right) N_S(E) N_S(E + \hbar\omega)$$
$$g_2(E) = \frac{E(E+\hbar\omega) + \Delta^2}{\sqrt{(E+\hbar\omega)^2 - \Delta^2}\sqrt{\Delta^2 - E^2}} = -ig_1(E)$$

E to E+iΓ $\Gamma = 17 \ \mu eV$ Dynes broadening parameter

$$\sigma = 2e^2 N(0)D$$

Localization: DCorrelations: N(0)

Good quality NbN: too much surface resistance

Macroscopic quantum state

1-dimensional

$$\begin{split} \psi &= |\psi| e^{i\varphi} \\ |\psi| &= \sqrt{n_s} \\ j_s \propto \nabla \varphi \end{split}$$

Vortex core on the scale of ξ and circulating current

$$B(r) = \frac{\Phi_0}{2\pi\lambda^2} K_0\left(\frac{r}{\lambda}\right) \approx \sqrt{\frac{\lambda}{r}} \exp\left(-\frac{r}{\lambda}\right),$$

Rainer et al, PRB 1996

Dynamics of flux flow

$$\frac{\partial \varphi}{\partial t} = \frac{2eV}{\hbar}$$

Berezinskii-Kosterlitz-Thouless transition in 2D superconducting films $\int \Delta(T)$

$$\lambda_{\perp} = 1.78 \frac{\Phi_{0}^{2}}{4\pi^{5}} \frac{e^{2}}{\hbar} \frac{R_{\Box}}{k_{B} T_{c0}} f^{-1} \left(\frac{T}{T_{c0}}\right).$$

$$\frac{T_{KT}}{T_{c0}} f^{-1} \left(\frac{T_{KT}}{T_{c0}}\right) = 0.561 \frac{\pi^{3}}{8} \left(\frac{\hbar}{e^{2}}\right) \frac{1}{R_{\Box}}$$

$$= 2.18 \frac{R_{c}}{R_{\Box}},$$

$$\left\{\frac{\Delta(T)}{\Delta(0)} \tanh\left[\frac{\beta\Delta(T)}{2}\right]\right\}^{-1}$$

$$\boldsymbol{k}_{\rm B} T_{\rm KT} = \frac{1}{2}\pi \hbar^2 n_s^{2\rm D} / m^*$$

Coulomb blockade and Josephson coupling

$$H\sim rac{1}{2}{\displaystyle\sum_{i,j}} Q_i C_{ij}^{-1} Q_j - rac{E_{\mathrm{J}}}{2}{\displaystyle\sum_{\langle i,j
angle}} (\phi_i-\phi_j)^2$$

$$\frac{\mathrm{d}\phi_i}{\mathrm{d}t} = \frac{2e}{\hbar} V_i = \frac{2e}{\hbar} C_{ij}^{-1} Q_j$$

$$H = H_{ch} + H_{J}$$

= $\frac{1}{2} \sum_{i,j} (Q_i - Q_{x,j}) C_{ij}^{-1} (Q_j - Q_{x,j}) - E_J \sum_{\langle i,j \rangle} \cos(\phi_i - \phi_j - A_{ij})$

Three competing processes

$$\sigma = 2e^2 N(0)D$$

- 1. Disorder: quantumcoherent elastic scattering: localization
- 2. Electron-correlations: opening of a Coulomb gap
- 3. Superconducting correlations

Superconducting state disappears by decrease of *amplitude*Superconducting state disappears by *phase fluctuations*

Evolution in time

Josephson coupled

Coulomb coupled

Dissipation in electromagnetic environment

Rimberg et al, PRL 78, 2632 (1997)

Example N(0): superconductor-metalinsulator transition: Nb(x)Si(1-x)

Bishop, Dynes et al, 1983/1985

Disordered superconducting films: intrinsic inhomogeneous pair-density

Localization: electrons get 'trapped'
Correlations: reduction in density of states at Fermi level

Superconducting correlations

T.I.Baturina et al, Phys. Rev. Lett. 99, 257003 (2007)B. Sacepe et al, Phys. Rev. Lett. 101, 157006 (2008)

Density of states: bandstructure calculations; combined electronic structure and many-body approach.

Allmaier et al, PRB 79, 235126 (2009)

Mott correlation gap in ordered TiN

Our results suggest that TiN is a peculiar metal with a pseudogap at the Fermi level, indicating the proximity to a metal-insulator transition. In our calculations the pseudogap regime is best described for a value of U=8.5 eV for the Coulomb interaction.

Consequences for superconductivity?

Summary

- NbTiN and TiN have quality factors over 1 M
- These superconductors are 'bad metals'
- Superconducting properties may be non-uniform
- Surface resistance in good quality NbN might be an indication
- Dynes parameter in Mattis-Bardeen might signal the same
- However, the films might be well-ordered.

Thermally activated phase slip (1 dimension)

$$|\psi(x)|^2 \frac{d\varphi}{dx} = constant \propto I$$

$$\Delta F_0 = \frac{8\sqrt{2}}{3} \frac{{H_c}^2}{8\pi} A\xi$$

$$\delta F = \Delta F_{-} - \Delta F_{+} = \frac{h}{2e}I$$

$$\frac{d\varphi_{12}}{dt} = \Omega[exp(-\frac{\Delta F_0 - \delta F/2}{kT}) - exp(-\frac{\Delta F_0 + \delta F/2}{kT})] = 2\Omega e^{-\Delta F_0/kT} \sinh \frac{\delta F}{2kT}$$

MoRe nanowires: Sahu et al, Nature Physics 5, 503(2009)

Superconductor-insulator transition

- Phase-coherence: phase-fluctuations
- Disorder
- Coulomb interactions: electron-electron interactions
- Berezinskii-Kosterlitz-Thouless vortices: flux flow
- Anderson-localization
- Mott-insulator

$$\frac{\partial \varphi}{\partial t} = \frac{2eV}{\hbar}$$

Conclusions

 Superconductors at these 100 mK temperatures with so few qp's are poorly explored territory

• Nonuniformity which is not microstructure related?

• Characterization might provide interesting data relevant outside the engineering community

• Example: why does Tc decrease so nicely with N-content in TiN?

$$T_{c} = \frac{\hbar}{\tau_{*}} \left[\frac{\sqrt{2\pi g} - \ln(\hbar / T_{c0} \tau_{*})}{\sqrt{2\pi g} - \ln(\hbar / T_{c0} \tau_{*})} \right]^{\sqrt{\pi g/2}}$$

