# How can we exploit fluorescence simulations and retrievals?

(or: what am I doing here?)



lan Baker Colorado State University









### Simple Biosphere Model (SiB)

- Enzyme-Kinetic model (Farquhar, Collatz, Ball-Berry)
- Lower boundary for atmospheric modelsbut with ecology!
- process-based; mechanisms
- Self-consistent (LE, H, Carbon)
- short timestep (10 min)



### GPP; What do we think?

- Global total
  - 120-125 GT (Beer; IPCC)
  - **–** 150-175 (Welp)
  - **–** 120-140 (SiB)
- Spatial Distribution?

North America?







### SiB GPP; Variability

 With a single model (SiB), we can get multiple GPP solutions based on phenology



Hemes et al., 2010

# How can we constrain the model(s)?

- isotopes (Suits et al., 2005)
- OCS (Berry et al., 2012)
- fluorescence





### SiB Fluorescence Parameterization

Semi-Empirical

photosynthesis yield = Je/Jo = x

rate constants

kn = 0.05043 \* exp(5.1473 (1-x))

kf = 0.05

kd = 0.95

kp = 4.0

fo = kf / (kf+kd+kn+kp)

fm = kf / (kf+kd+kn)

dfv = 0.8 \* fm \* x

fs = fm - dfv

RTc is very simple (no BRDF)!

### 



# SiB fluor plots







# SiB: diurnal composites

- stressed (red) and
  nonstressed (black) sites
- GPP shows pattern similar to what was seen in Jaume's talk
- But...Fs doesn't
- What does this tell us?



### Why am I here?

- What do I want?
  - input from plant physiologists
  - multiple models
- What can I contribute?
  - coupler between physiology and retrieval
  - evaluation?