The Global
Carbon Cycle
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In a nutshell

* We are mining fossil CO, and titrating into the
oceans, (buffered by acid-base chemistry)

* Much of the fossil CO, will remain in the
atmosphere for 10" s of thousands of years

» About half of fossil-fuel CO, is absorbed by
poorly-quantified “sink” processes

+ The strength and even the sign of potential
carbon-climate feedback is among the most
uncertain aspects of climate change in the 21st
century



Carbon, Life, and Energy

PHOTOSYTHENSIS

WATER + LIGHT » CHEMICAL ENERGY

* Photosynthesis uses
energy from the sun to
convert inorganic air
(CO2) to living biomass!

~* Most of this energy is
released through
respiration (back to
CO2) when plants are
eaten by animals,
bacteria, people

1. Chloroplasts trap light energ "

|2, Water enters leaf _

Light energy

3. Carbon dioxide
enters leaf through
stomata

Z 4 Sugar leaves ledf
CHEMICAL ENERGY + CARBON DIOXIDE = SUGAR



Breathing of the Earth

» Plants harvest solar energy to connect inorganic
molecules of CO2 into living organic
biochemicals, like beads on a string

* Amazingly, about 1/7 of all the CO2 molecules in
the atmosphere are transformed into living
biomass every year by photosynthesis!

* Nearly all of these molecules are replaced each
year by respiration and decomposition of dead
biomass

* A tiny residual accumulates over geologic time
as coal, oil, and natural gas



Fossil Fuels
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Hydrocarbons, Energy, and CO:
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- We dig this stuff (“fossil fuels”) up and burn it,
harvestmg the stored energy to power
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The Global Carbon Cycle

About half the Atmospere “Uissing”
Co, relec.zsed by carbon is hard
humans is to find among
absorbed by } large natural
oceans and land ~120  fyxes
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Gigatons Carbon/Year

Sources and Sinks

Fossil Fuel Emissions of CO2 and Atmospheric Buildup, 1958-2008
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- Some years aln@st all the fossil carbon goes into the
atmosphere, some years almost none

»  Interannual variability in sink activity is much greater
than in fossil fuel emissions

+ Sink strength is related to El Nifo. Why? How?



Where Has All the Carbon Gone?

Into the oceans

- Solubility pump (CO, very soluble in cold water, but rates
are limited by slow physical mixing)

- Biological pump (slow “rain” of organic debris)

Into the land

- CO, Fertilization
(plants eat CO2 ... is more better?)
- Nutrient fertilization
(N-deposition and fertilizers)
- Land-use change
(forest regrowth, fire suppression, woody encroachment ...
but what about Wal-Marts?)
- Response to changing climate
(e.g., Boreal warming)
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Vertical Structure
of the Oceans

South  60° 30° Equator 30° 60° North
Surface Water —= —*

sfc

Intermediate Water

4 km

[ Increased nutrients & dissolved CO,
B Warm, low nutrients, & oxygenated

Warm buoyant “raft” floats at surface
Cold deep water is only “formed” at high latitudes
Very stable, hard to mix, takes ~ 1000 years!

Icy cold, inky black, most of the ocean
doesn’ T know we’ re here yet!



Bad Ideal!

(but a perfect carbon tracer)

e

. In 1963, the US and USSR exploded dozens of
thermonucelar weapons-in the-atmosphere

» Radioactive *CO, produced in these tests has
precisely the same chemistry & biology as '“CO,
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Observing the Deep Ocean
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Figure 8. Zonal mean distributions of estimated anthropogenic CO, concentrations (in units of pmol kg") along north-south
transects in the Atlantic, Indian and Pacific oceans. The Pacific and Indian Ocean data are from the Global CO, Survey (this
study), and the Atlantic Ocean data are from Gruber (1998).

Estimated from total observed
DIC using stoichiometry

Most anthropogenic CO2
confined to top few 100 m

“Shoaling” in tropics,
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€O, solubility in seawater

depends sensitively on SST

0.05¢

0.04¢}

moles kg'1 atm

0.03}

North Adantic
deep water

14w

.- The “Solubility Pump”

CO, is highly soluble in
cold high-lat waters

Transported to deep
ocean by convection and
isopychal mixing

Dynamically-driven
equatorial upwelling
brings high-CO, water to
surface

Atmospheric transport
closes the loop



Base of euphotic zone
physical mixing

and bacterial decomposition

v passive active DIC Conc

sinking of vertical
POC, PIC migration -
consumption,
decomposition repackaging a excretion
v » O =
» - vy »
(bactena) (zooplankton) !
.

respiration
\ 4

S'eabed {burial)
Ducklow et al (2001)

Primary production limited by availability of
hutrients and light

Loss of nutrients from light by sinking must
equal delivery of nutrients by upwelling

“Primary production”
generates communities of
phytoplankton from DIC
and nutrients in the
presence of light

Zooplankton “graze” on
phytoplankton

Bacterial decomposition
and heterotrophic
respiration recycle DIC
and nutrients to the water
column

Detrital particles from
dead phytoplankton and
zooplankton waste
coagulate into
progressively larger
particles

Larger particles sink
faster than turbulence can
resuspend them, so fall
below euphotic zone



Dissolved CO, in Seawater
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» CO, dissolves (weakly) in seawater, forming a
buffered system w/ bicarbonate and carbonate

+ Strongly interacts with pH and alkalinity



Ocean Acidification

Fig. 1 Temporal evolution of ocean acidification in the California CS

from 1750 until 2050 for the A2 scenario.
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Ocean Acidification
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OCEAN: SUMMARY

* Ocean is thermally stratified; mixing is slow,
transport to depth confined to NADW and
AABW

» Carbon isotopes (1*C) from nuclear tests provide
a ‘'marker’ for us to record mixing of
anthropogenic CO,

» Computer models agree with observations;
Oceans take up ~2.3 GT carbon/year

» As atmospheric CO, rises, ocean uptake will
Increase

- BUT:; more CO2 => more acidic ocean






Carbon Balance; Things we know

. Atmospheric CO, increases annually, in
response to Fossil Fuel consumption

. Only about 7 of the CO, we release stays in
the atmosphere

About 7 of the CO, we release (‘half of the
half') goes into the ocean; this is fairly well
understood

. The other # MUST go into the land; what is
going on?



Leaf Anatomy
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Carbon and Water

stomatal

cavity ]
Esat Ci

» Plants eat CO, for

a living

» They open their

stomata to let
CO, In

- Water gets out as

an (unfortunate?)
consequence

* For every CO,

molecule fixed
about 400 H,0
molecules are lost



Canopy Carbon Balance

Net Ecosystem
Carbon Exchange

Gross Photosynthesis

¢

Dark and
Photo Respiration g

CO2 Stnrage

bole respiration

I'E’EPil'ﬂ-ﬂ on IﬁEEpil' ation

root respiration



Land Carbon Sink

+ If the land is taking up % of the released fossil
fuel CO,, then the plants are growing faster
than they are decomposing!

- What are some mechanisms?

- CO, fertilization
- Nitrogen fertilization
- Season broadening



CO, Fertilization
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* Increasing plant growth (NPP) due to enhanced

atmospheric CO,

* Delayed increased respiration (residence time)
+ Spatial pattern follows both NPP and residence 7

Uptake
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Free Air Carbon Enrichment (FACE)
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Duke FACE Results
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Figure 1 A comparison of annual carbon increment under elevated atmospheric CO :
v : e« Enhanced growth in

concentration (initiated in 1994) and ambient concentration without nutrient addition.

a, Plot-level comparison between the free-air CO, enrichment prototype (FACEp) and a C
nearby untreated, ambient CO, plot (in the past 2 yr, the number of untreated plots was eleva.red OZ

increased to five). b, Individual tree comparison between trees in FACEp and trees . % A I . o g o . ””
selected at random from the entire stand. Data for 1993 are shown as means for the first C C | m | T I ZGT 10 n

10yr of the stand’s life.
Oren et al (2001) affer a few years



Season Broadening

historical growing season
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longer growing season

More carbon taken up during longer growing season,
respiration hasn't ‘caught up’ yet...



Other Mechanisms

* Woody encroachment
- Arctic
- savanna

* Fire suppression



But...(there's always a 'but’)

* Woody Encroachment

- Warming may result in
permafrost thaw

- Release of stored
carbon

(b) A2 (2080-2099)
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(c) Observations
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Figure 1. Ensemble mean permafrost area and active layer thickness as simulated in CCSM3 at the end of the (a) 20th and
(b) 21st centuries. (c) Observational estimates of permafrost (continuous, discontinuous, sporadic, and isolated). (d) Time

series of simulated global permafrost area (excluding glacial Greenland and Antarctica). The gray shaded area represents
the ensemble spread.

Lawrence et al., 2005



But...(there's always a 'but’)

400

- Fire Suppression

- Some studies show a
release of CO, in the
last century

- Higher intensity of

fires that do occur

g

_——Ss

10-30  30-61  61-91 >

total

Figure 1. Mean and 95% confidence intervals for (a) tree
density and (b) carbon stored in live aboveground biomass for
conifer forests receiving >114 cm mean annual precipitation.
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But...(there's always a 'but’)

-05 -0.1 -0.05 -0.01 0.01 005 01 05

Fig. 4. Simulated changes in fractional cover of the broad-
leaf tree functional type relative to 2000. 30-year means
centred around (a) 2050 and (b) 2080

Betts et al

- Amazon Conversion

., 2004

- Future climate will be
drier in Amazonia

- Tropical Forests may
be converted to
grassland or savanna

- Large release of CO,



Sink Variability

- Total 'sink’ varies
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Sink Variability

- Land Sink is more

LAND TOTAL
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Let's Review:

+ What we KNOW:

- Atmospheric CO, levels are rising
- Human caused

- There is a natural 'sink’ of ~half of emitted CO,
- Ocean
* Land

- Land sink is more variable than oceanic

- In general terms, plants are growing more than they
are dying



Let's Review:

« What we DON'T KNOW:

- What are the exact physical mechanisms responsible
for the land sink, and their relative magnitude

- What is the spatial organization of the land sink?
- How will the land sink behave in the future?

- What action, if any, will humans take?



Ecosystem Recovery & Succession
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Billions of Tons of Carbon per Year

Emission Scenarios
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Common Myth
* “When we reduce or stop the burning of fossil
fuel, the CO, will go away and things will go back
to normal” Global Warming
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. . 2 4 (——
CO, from fossil fuel will react 2 | e
with oceans, but only as fast as looo 10 200 20 mo 2300
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with rocks | .
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< e 1800 AT 2000 2100 2200 2300
About 1/3 of today’s emissions —— | Fossil Fuel Emissions
will stay o Y
in the air ‘permanently’l . 2|
@ 15 |



CO, "Budget” of the Atmosphere

Fossil Fuel
Burning
8 ATMOSPHERE
billion
tons go in 4 billion tons added every

£

year

300

billion tons carbon
‘ . 71 : \-’

Rob Socolow and Steve Pacalahttp://www.princeton.edu/wedges/
Climate Mitigation Initiative, Princeton University

+ = 4 biliion tons go out

J‘Pﬂ Mig,

nitiatve.



Bathtub Drainage

What if we It will take centuries for plants and the ocean to soak up
stop emissions most of the human-made CQO.. It will take hundreds of
completely? millennia for the rest to be removed by rock weathering,
which converts CO; to carbonate sediments and rocks.

450 ppm 350 ppm

Why would the level v
stay high for so long?
Plants and The deep ocean is Carbonate sediments
soil absorb - bigger, but access and rocks are far
CO; quickly, is slow; CO,-laden bigger and slower still;
but that surface water sinks they form at sea from
reservoir at only two places elements weathered
fills up fast, near the Poles. off rocks on land.
i

&

DEEP OCEAN SEDIMENTS & ROCKS




Land Uptake (GtClyr)

Ocean Uptake (GtClyr)

Carbon-Climate Futures
Friedlingstein et al (2006)
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Summary

+ Emissions of CO, by global industry are part of
a much bigger biogeochemical cycle of carbon

» About half of anthropogenic CO, emissions are
removed from the atmosphere by pertubations
to natural biogeochemistry that are not
completely understood

- Uncertainties in future human emissions and in

the response of global biogeochemistry to
changing climate are among the leading sources
of uncertainty in predictions of 21st century
climate



Emerging Technology!

» Land 'sink’ is small residual from large uptake
(photosynthesis) and respiration terms

+ Global observation of these terms have not

been available

* New observations of from plants
may provide a window into global photosynthesis
processes

- This, in turn, may help us to be able to describe
the land sink more completely for both present
and future climatel



Fate of Anthropogenic CO, Emissions (2000-2009)
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