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» Chlorophyll fluorescence is the emission of light by
chlorophyll molecules that have previously absorbed
light.

e It occurs because the chlorophyll molecule is
capable of storing the energy of a photon in an
excited electronic state - often referred to as an
"exciton."

 Emission of a new photon is one of the ways that
the chlorophyll exciton can return to its ground state.
While this energy storage can last only a few nano
seconds at most, it is this ability to store energy that
makes photosynthesis possible.

* Fluorescence and photochemistry are closely linked
processes that co-occur, and fluorescence has long
been used as a probe for the initial events in
photosynthesis.
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* The chlorophyll in photosynthetic organisms is bound in
a highly organized state in protein complexes which
iInclude a photochemical reaction center and associated
chlorophylls that function as an antenna to collect light to
drive the photochemical reaction.

* There are two types of reaction centers, PS | and PS |l
in leaves. Most of the fluorescence comes from PS Il.

Fleming, G. R., Schlau-Cohen, G. S., Amarnath, K., & Zaks, J. (2012). Design principles of photosynthetic light-harvesting.
Faraday Discussions, 155, 27. doi:10.1039/c1fd00078k
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* The concept of how excitons are processed in
photosynthetic systems is undergoing something of a
revolution.

* Until recently it was thought that excitons were
localized on individual chlorophyll molecules and
moved around by jumping from molecule to molecule
eventually reaching a reaction center by a random
walk.

* In contrast recent experimental evidence indicates
that excitons may be delocalized by a phenomenon
known as quantum coherence.

* The coherent exciton has properties of a wave
sloshing around the whole space of a chlorophyll
protein complex sampling the available routes for de-
excitation.

e Evolution knows about quantum mechanics.

Monday, August 27, 12



Arcsinh

838 828 818 808 798

788

838 828 818 808 798

Coherence wavelength (nm)

788

788

798

808

818

828

838

788

798

808

818

828

838

828 818 808 798

838

828 818 808 798
Coherence wavelength (nm)

788

3]
> 8
Rephasing wavelength (nm)

R
®

8

Rephasing wavelength (nm)

Figure 1| Two-dimensional
electronic spectraof FMO. Selected
two-dimensional electronic spectra
of FMO are shown at population
times from T = 0 to 600 fs
demonstrating the emergence of the
exciton 1-3 cross-peak (white
arrows), amplitude oscillation of
the exciton 1 diagonal peak (black
arrows), the change in lowest-
energy exciton peak shape and the
oscillation of the 1-3 cross-peak
amplitude. The data are shown with
an arcsinh coloration to highlight
smaller features: amplitude
increases from blue to white (for a
three-dimensional representation
of the coloration see Fig. 3a).

Engel, G. S., Calhoun, T. R., Read, E. L., Ahn, T. K., Mancal, T., Cheng, Y.-C., Blankenship, R. E., et al. (2007). Evidence for
wavelike energy transfer through quantum coherence in photosynthetic systems. Nature, 446(7137), 782—786. doi:10.1038/

nature05678
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Chlorophyll Fluorescence - the Kautsky effect
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Kautsky is the “father of the field”, but he also fostered the
Impression that fluorescence is very complicated.
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All that is needed to observe fluorescence is an appropriate pair of
filters.

 a short pass filter to condition the light reaching the leaf so that it
has no light in the band where chlorophyll fluoresces

*a second filter, a long pass filter that blocks the incident light but
will pass the fluorescence.
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Frankenberg, C., Fisher, J. B., Worden, J., Badgley, G., Saatchi, S. S., Lee, J.-E., Toon, G. C., et al. (2011). New global
observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity.
GEOPHYSICAL RESEARCH LETTERS, 38(17). doi:10.1029/2011GL048738
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GOSAT is a complex retrieval system, but it makes a simple
measurement.
* Nadir view and approximately solar noon under clear sky.

* Photosynthesis is at near its peak daily value and steady, (forget
about the Kautsky effect).

* The “glow” is highly specific for plants doing photosynthesis,

Image of Earth at night from space (NASA

s it this simple?

Fs =1y -FPAR -0 - ¢

GPP = Iy - FPAR - 0p

0p
HF’G

GPR i =rF;
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- A large part of the variabllity is due to FPAR.

* Physiology also seems to have an
influence; B and Bp appear to co-vary.

» Calibration experiments are really difficult to
do at a realistic scale.

Sun induced fluorescence from above a corn field before, during and
after a drought.
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Fig. 10. Fluorescence flux (F's) versus PAR for three days: 214 no water stress, 243 maximal water stress effect, 248 after rainy days. and reversion of water
SIress.

Daumard, F., Champagne, S., Fournier, A., Goulas, Y., Ounis, A., Hanocq, J. F., & Moya, I. (2010). A field platform for continuous

measurement of canopy fluorescence. Geoscience and Remote Sensing, IEEE Transactions on, 48(9), 3358—3368. doi:10.1109/TGRS.
2010.2046420
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Leaf-scale experiments with grapes experiencing different levels of drought
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Flexas, J., Escalona, J., Evain, S., Gulias, J., & Moya, . (2002). Steady-state chlorophyll fluorescence (Fs) measurements as a tool to
follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants. Physiologia Plantarum
114:231-240.
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Analysis of leaf-scale experiments with 10 species before during and
recovery from drought (Galmes et al.) -- data provided by J. Flexas.
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Galmés, J., Medrano, H. & Flexas, J. (2007). Photosynthetic limitations in response to water stress and recovery in
Mediterranean plants with different growth forms. New Phytologist 175:81-93.
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Relative fluorescence yield, F

F = —2.3969x° + 3.0518z + 0.4262

rr=r T

JEre= A4 P (from any model)
(O ARlmea

Jo=T "a+ o

A is CO:2 uptake,

pi is intercellular CO2
a is absorptance

(¢ is quantum vyield,

['*is the compensation point
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e Leaf-scale calibrations of relative
fluorescence yield are routine.

 Variations in absolute yield from leaf to
leaf will need to be taken into account

* Fluorescence can be added to
photosynthesis models.

» Scaling from the leaf to the canopy will
be tricky, but we are already doing this for
GPP.

« Radiation transport in the canopy needs
to be included. It already is in SCOPE.
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reflectance of Earth targets: evaluation of analytical models using a
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The PAM Fluorimeter
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Schéfer, C. and Bjorkman, O.(1989). Relationship between efficiency of photosynthetic
energy conversion and chlorophyll fluorescence quenching in upland cotton (Gossypium

hirsutum L.). Planta 178:367-376.
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PAM fluorimeters can be used to calibrate F to the
electron transport rate (ETR).

Biochemical - stomatal conductance models can
be used to relate ETR to CO» fixation.

Some remaining problems:

At the canopy scale, changes in FPAR and
fluorescence yield (8F) are entangled.

Canopy scale calibrations will be difficult for tall
vegetation. Need to be several canopy heights above
the canopy to reproduce the satellite geometry.

Recent advances in xanthophyll cycle remote
sensing have caught my interest.
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Remote sensing the xanthophyll cycle
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Fluorescence and Xanthophyll by Canopy Remote Sensing.

Gamon, J., Field, C., Bilger, W., Bjérkman, O., Fredeen, A., & Pefuelas, J. (1990). Remote sensing of the xanthophyll cycle and
chlorophyll fluorescence in sunflower leaves and canopies. Oecologia, 85(1), 1-7.

Gamon, J., & Penuelas, J. (1992). A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency.
Remote Sensing of Environment 41:35-44.
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The PRI provides independent information on the
level of non-photochemical quenching.

It works best in “difference mode”. There is a lot
of natural background variabllity in the reflectance
in this region - cancels out in APRI.

(AMSPEC Il) The tower-mounted, automated,
multiangular spectroradiometer system takes
advantage of changes in sun-leaf/shade-leaf
fraction to get APRI.

Hilker, T., Nesic, Z., Coops, N. C., & Lessard, D. (2010). ANEW, AUTOMATED, MULTIANGULAR
RADIOMETER INSTRUMENT FOR TOWER-BASED OBSERVATIONS OF CANOPY REFLECTANCE
(AMSPEC II). Instrumentation Science & Technology, 38(5), 319-340. doi:
10.1080/10739149.2010.508357
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FIGURE 8 Image composites for DF-49 (A) and SOA (B), observed over 15-minute intervals.
The photographs have been stitched from 104 (DF-49) and 108 (SOA) individual observations using
a normalized cross-correlation approach.
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Fig. 5. Difference between maximum (south) and minimum (north) PRI (APRI)
for different & and Q strata for the directionally corrected case (zenith angle of
62°). Higher stress levels (low &) cause differences between sunlit and shaded
parts of the canopy to be more distinct. Also APRI is increasing with increasingly
clear skies.
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Remote sensing of the PRI is potentially synergistic
with sun induced fluorescence.

Fs is influenced both by changes in FPAR and
physiological feedbacks on fluorescence yield.

PRI is largely influenced by the physiological
component.

The AMSPEC measurements can be used to
construct the full BRDF function for the canopy
permitting one to predict what a satellite would see
without having to reproduce the geometry.

We should combine these measurements on the same
tower-based sensor package.
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Conclusions

There is strong empirical evidence that Fs gives
useful information on the rate photosynthesis.

It is sensitive to the combined influence of
changes in canopy optics and physiology.

Calibration and validation at the scale of the
GOSAT measurement footprint is challenging, but
we have a well developed theoretical understanding
at the leaf scale - at least as good as we have for
GPP.

| can’t over emphasize the importance of an
independent check on GPP. We have work to do.
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