

Improved estimates of vegetation carbon cycle components

Thomas Hilker Forrest Hall

Objective:

'Conventional' GPP model

Photosynthetic Energy Pathways

Associated changes in reflectance

Why multi-angular?

College of Forestry | Center for Remote Sensing

Effects of Function o

$$-\,\alpha_{sh}(\Delta+\varsigma+2\rho_{rsh})]\}\,/\,[\alpha_{sh}\delta_{dif}(\varsigma+2\rho_{rsh})$$

$$+ (1-\alpha_{\rm sh})(\Delta + \varsigma + 2\rho_{\rm rsh})]^2$$
.

College of Forestry | Center for Remote Sensin shaded sunlit shaded **Multi-angle Rer** $\varepsilon = high$ Webcam Downward looking probe ε= low Pan-Tilt unit AMSPEC Tripod mounting Upward looking probe with cosine diffuser ε= low -20 20 20 -20 Y(m) X (m)

Sites

Results

Stand level (AMSPEC)

How do we use this information to improve our models?

- Temporally discrete
- Spatially discrete

Temporal Scaling of GPP

Data assimilation

Temporally discrete ε_{opt}

Model comparison: GPP

MODIS GPP model:

Tower f_{PAR} , PAR, MODIS ϵ

Data assimilation model:

Tower f_{PAR} , PAR, assimilated ε

Comparing Results

Hilker et al. RSE (2012)

Energy balance

H

λE

$$H = \frac{\rho c_{\rho} (T_c - T_A)}{r_a}$$

$$\lambda E = \frac{\rho c_{\rho} \partial_{e}}{\chi (r_{c} + r_{a})}$$

Energy balance

Stomatal conductance is linked to GPP (A)

$$g_s = m \frac{Ah_s}{c_s} + b$$

(Ball Berry Collatz relationship)

Latent heat flux

Energy Balance: λE+H

We can determine R independently of T_{Soil}

Diurnal variability of R

Conclusions

- This is the first time we can directly infer ε from satellites
- Combined with fluorescence: Onboard validation, two independent measurements!
- This allows us to revisit
 - Respiration independently of T_{Soil}
 - Energy balance
- Method could revolutionize monitoring of terrestrial GPP using data assimilation

Thank you!! For your attention! Questions?

Thomas Hilker

Assistant Professor

College of Forestry | Oregon State University

231 Peavy Hall | Corvallis, OR 97331

541.737.2608 301.326.3743 FAX 541.737.4316

thomas.hilker@oregonstate.edu

