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Why study the stratigraphy of the PLD?

From 6t |ICMPSE 2016:

Question 2: What do the characteristics of Martian polar ice deposits reveal about their
formation and evolution?

Question 3: How has the Martian climate evolved through geologic history, what are the

absolute ages of the observable climate records, and how should we interpret the
records of past states?

We need:

*  Detailed knowledge of the layer properties and their arrangements in
the geologic record

*  Correlate to Mars’ climate history influenced by the evolution of its
astronomical parameters

GOALS:

Determine the age of specific layers and the climatic
state in which they were deposited

Detailed understanding of the geologically recent
evolution of the Martian environment




The connection of the PLD to climate

Orbital and axial oscillations = changes in the distribution of insolation on the surface

- Changes in insolation drive changes in the distribution of ice and dust on the surface
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Observing the stratigraphic record

An accurate characterization of the internal layering is crucial to search for a record of climate - The best stratigraphic
descriptors are those that most closely relate to the layer formation environments, e.g. dust/ice ratio, isotope variations.

From orbit we have primarily two choices:
1. Imaging/Topography of outcrops: Complex relationship to intrinsic properties. Upper ~ 500 m.

2. Subsurface radar: Changes in dielectric properties. View deepest PLD layers. Relation to outcrops unclear.
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Observing the stratigraphic record

An accurate characterization of the internal layering is crucial to search for a record of climate - The best stratigraphic
descriptors are those that most closely relate to the layer formation environments, e.g. dust/ice ratio, isotope variations.

From orbit we have primarily two choices:
1. Imaging/Topography of outcrops: Complex relationship to intrinsic properties. Upper ~ 500 m.

2. Subsurface radar: Changes in dielectric properties. View deepest PLD layers. Relation to outcrops unclear.
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Mapping and Analysis Methods




Geologic Framework

Widespread image coverage + topography = Visually identify broad stratigraphic units and unconformities
Crater statistics = ~Age. Surface ages: 10 — 100 Myrs for the SPLD. < 5Myrs for the NPLD.
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This work is expertly performed and published by Tanaka, Kolb, Fortezzo, et al., in a series of papers and geologic maps



Layer Correlation in Images

Sequences of layers must be identified in
separate locations for these to be
considered correlated

Site N6

Identification is done through morphologic
and/or topographic comparisons

Fishbaugh and Hvidberg, 2006

Image 1 Image 2 Image 3

V17643015

V16472006

Because of the periodic nature of the PLD, this
method can sometimes be unreliable

Milkovich and Plaut, 2008



Correlation of continuous profiles

High resolution stereo allows a variety of measurements:

. Topographic expression at varying wavelengths (protrusion) . Brightness from orthorectified
images
. Local slope
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Correlation of continuous profiles

High resolution stereo allows a variety of measurements:

Topographic expression at varying wavelengths (protrusion)

Local slope
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Signal matching techniques

Continuous stratigraphic profiles allow for correlation through signal-matching techniques

Dynamic Time Warping (DTW): Tunes (stretches or contracts) a pair of signals to find the optimal match between them
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Radar-based stratigraphy

577702 Mt delay time
Radar enabled us to “see” the internal structure of ¢ YR W3 ,

the PLD il !
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Radargrams = distance along track + power vs.
delay time image:

. Geometric distortion from surface topography
and change in signal speed through different

media 2> A
Ad = [
2¢&

. Permittivity (¢) estimated from SHARAD +
MOLA to be ~3.15 for the NPLD - typical of
pure water ice under Martian conditions

. Good SHARAD data coverage allows mapping
of radar units throughout the cap area

- Radar-based stratigraphy

Putzig et al. 2009



Radar-based stratigraphy
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Searching for periodicities

Time-Series Spectral Analysis:
Decompose periodic-driven functions into their periodic components. E.g. FFT Analysis, Wavelet Analysis

Insolation periodicities due to changes in orbital parameters: Argument of
Obliquity (120 kyr), and argument of perihelion precession (51 kyr) perihelion Obliquity oscillation
precession period = 120 kyr

period = 51 kyr
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Searching for periodicities

Decomposes a 1D time/depth-varying function into a 2D depth-frequency/wavelength image of spectral power (WPS) ->
Reveals dominant wavelengths and their variation with depth
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Stratigraphy of the SPLD




SPLD: Image-based stratigraphy

Milkovich and Plaut (2008) visibly correlated layer sequences by their morphology in THEMIS images (17 m/p) of exposures
- Three large scale sequences of layers inferred, each with a different areal extent

= thin
layers

subtle
layers

knobby
layers

dark
layers

Promethei LlnLJIa Laer
Sequence (PLL)

Bench Forming Layer
Sequence (BFL)

identified as possible
bench-forming layer by
Byrne & Ivanov, 2004
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V17459014

Possible PLL - BFL correlation 17643015

PLL sequence

BFL sequence

PLL sequence

Inferred large-scale structure of the SPLD




SPLD: Image-based periodicity analysis

Limaye et al. (2012) measured thicknesses of layers using HIRISE DTMs at three locations on the SPLD
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SPLD: Results from Radar

Plaut et al. (2007) used MARSIS to measure the thickness of
the SPLD deposits

* Mapped base of SPLD (¢ = 3)
* Calculated difference from MOLA topography
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Milkovich et al. (2009) analysis of Promethei Lingula:
. Dark SHARAD bands correlate to MARSIS reflectors
— High dusty to clean contrast?

. MARSIS reflectors correlate to groups of exposed
layers in THEMIS

Evidence of a relationship between radar reflectors and
exposed layers in the SPLD - dust/ice ratio?




SPLD: Radar detection of buried CO, units

Phillips et al. (2011) explored a SHARAD Reflection Free Zone (RFZ) under the SPRC - large deposits of buried CO, ice
corresponding to unit AA; of Tanaka et al. (2007)

«— CO,
— SPRC

Further characterized by Bierson et al.

(2016):

* 3 RFZ separated by water ice bounding
layers (BL) A3 |~ 340 kyr

* Enough ice to double Mars’ atmospheric 3b

1 pressure
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Stratigraphy of the NPLD




The search for an NPLD climate signal: Images

Laskar et al. (2002) compares 350 m of MOC brightness to insolation history - 51 kyr arg. of perihelion period - ~0.5 mm/yr
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The search for an NPLD climate signal: Images

Laskar et al. (2002) compares 350 m of MOC brightness to insolation history - 51 kyr arg. of perihelion period - ~0.5 mm/yr
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NPLD: Topography-based correlations

HIiRISE Stereo allowed layer-scale topographic measurements ->

First layer-scale stratigraphic column of Fishbaugh et al. (2010)
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NPLD: Topography-based correlations

HIiRISE Stereo allowed layer-scale topographic measurements ->
First layer-scale stratigraphic column of Fishbaugh et al. (2010)
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NPLD: Topography-based correlations

...and use DTW to correlate many sites to each other

+8 NO vs. N1 no prior information
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NPLD: Topography-based correlations

. Five sites were reliably correlated to site NO of the Fishbaugh et al. (2010) column
. These sites share all or part of the Fishbaugh et al. sequence of layers that we call the Main Sequence
. Valid for at least 7% of the area of the NPLD
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NPLD: Wavelet analysis of high-res imaging

No absolute chronology = Best to compare ratios of wavelengths diagnostic of known insolation periodicities

Becerra et al. (2017) finds a common ratio of wavelengths systematically lower than the characteristic wavelengths of
insolation - Simulated stratigraphy with accumulation model of Hvidberg et al. (2012) results in a similar ratio
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NPLD: Radar-based subsurface structure

Putzig et al. (2009) mapped 5 units of packet-interpacket * Interpacket = low amplitude insolation oscillation
zones down to the base of the NPLD. «  Packet = high amplitude variations
»  Coverage and conformable geometry of units implies - Packet reflectors are driven by dust content changes

uniform accumulation

+ Except for Unit D during periods of high ice accumulation
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The detail shown by the SHARAD dataset was crucial to understanding the formation of Chasma Boreale and the spiral
troughs (Holt et al. 2010, Smith and Holt, 2010. Previous talk)



NPLD: Recent Ice Age and the WRAP layer

Smith et al. (2016) mapped the Widespread Recent Accumulation Package (WRAP) based on changing SHARAD reflector
properties throughout the extent of the NPLD

. Minimum thickness = 0 m (exposed unconformity). Maximum thickness = 320 m

. Matches end of last Martian ice age (~370 ka) - lots of ice would have been transferred to the poles from lower
latitudes (rapid accumulation) after a period of the opposite (erosion - ice age)

400

200 300

NPLD Thickness

Buried troughs, changing undulation patterns

- period of erosion followed by increased
accumulation

- end of anice age




Dataset correlation and Future Directions




Potential correlation of datasets

Radar and visible often treated separately
- no complete picture of the relationship between NPLD and orbital forcing (let alone the SPLD)

Reminiscent of terrestrial climate science issues: orbital climate forcing ultimately confirmed by correlation of sedimentary,
geochemical and paleomagnetic records

GOAL: Combination and correlation of optical data with radar data to inform modeling
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Christian et al. (2013): First quantitative attempt to correlate SHARAD reflectors to individual layer outcrops:

. Agreement between the topographic (similar long-wavelength topography) and spectral (30 m A) properties of
reflectors and exposed layers

. One-to-one reflector to layer/packet correlation not possible due to lack of coverage at the time and geometric issues



Potential correlation of datasets

Radar and visible often treated separately
- no complete picture of the relationship between NPLD and orbital forcing (let alone the SPLD)

Reminiscent of terrestrial climate science issues: orbital climate forcing ultimately confirmed by correlation of sedimentary,
geochemical and paleomagnetic records

GOAL: Combination and correlation of optical data with radar data to inform modeling

Lalich et al (2017): Tested hypothesis that reflectors are caused by erosionally resistant Marker beds

. Bed thickness more likely to cause variations in reflectivity
- radargrams can inform on relative accumulation rates

. Correlation between reflectors and modeled Marker beds (Hvidberg et al. 2012), but dust content/accumulation rates
probably underestimated



Future efforts

Use radar propagation modeling (Nunes and Phillips, 2006) to simulate radar signal through a permittivity profile
constrained by HiRISE topography - compare to real radargram with spectral and signal-matching techniques
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. Current goal is to obtain a dust/ice ratio stratigraphic column that describes the whole cap to input into orbital-
based accumulation models

. In the future, samples would be ideal. Isotopic variation measurements, and we may learn about recent volcanic
events or large ejecta blankets that intersect with our location

. Improve analysis on SPLD
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