Surface Geology & Geologic Processes on **Primitive Bodies**

Tempe, Arizona

Jim Bell

Outline

- Diagnostic potential of geologic processes for understanding origin & evolution of primitive bodies
 - Impact Cratering
 - Erosion/Gradation
 - Tectonism
 - Volcanism
- Interspersed with examples from primitive bodies:
 - Main Belt & Near Earth Asteroids
 - Comet Nuclei
 - Planetary Satellites (some not so primitive though...)
- Some thoughts about future observations

• Where does "geology" begin to be expressed?

- At large enough sizes, objects can preserve impact craters without being completely destroyed
- Above a threshold size, self-gravity leads to a spherical shape because of internal heating/relaxation. Differentiation? Gradational processes?
- Larger sizes, more internal heating: Volcanism? Tectonism? Gradation?
- Note: Somewhere in here is where some people define "planet"...

Planetary Surface Processes

- Four major geologic processes:
 - Impact Cratering
 - Volcanism
 - Tectonism
 - Erosion (also called "Gradation")
- The combination of these processes, working over a variety of timescales, is responsible for producing what we see on solar system surfaces today with spacecraft and telescopes

Impact Craters:

Common geologic landforms on all spatial scales

Lunar maria are huge impact basins that were flooded by lava. Only a few small craters appear on the maria.

Lunar highlands are ancient and heavily cratered.

a Many craters are bowl-shaped.

b Impacts into icy ground may form muddy ejecta.

Key Morphologic Parameters

- Crater diameter
- Crater depth (relative to surroundings...)
- Floor diameter (if there is a "floor")
- Degree and type of failure of the inner walls
- Radial range of the ejecta (including possible impact melt)

Fig. 7.1 Variables and parameters important in impact crater scaling relations. These quantities are divided into three groups: Projectile variables are density ρ_p , diameter L, mass m, impact velocity v_s , kinetic energy W, and angle of impact θ . Transient crater descriptors are apparent diameter $D_{\rm at}$, radius $R_{\rm a} = D_{\rm at}/2$, distance from the crater's center r, crater depth $H_{\rm at}$, crater volume V and ejecta blanket thickness δ . Target variables are density ρ_p yield strength Y, porosity ϕ , and the acceleration of gravity g. Not all of these quantities are independent, but the different forms are used where convenient in this chapter.

Fig. 8.3 A geomet relates the depth H lens thickness II, of

rmation. Based on volume conservation, the model sient crater to the depth H. diameter D, and breccia im thickness δ is taken into account by this model.

Depth to Diameter Ratio

38

Ages of Planetary Surfaces

Relative ages often determined by impact crater number density [craters/km²]

If these two images are of the same-sized regions on the same planet, which area is likely older?

Why?

What assumptions are required?

Relative Age Dating from Impact Craters:

"Crater Retention Age"

Example/Idealized Surface

Hartmann (1977)

Actual/Absolute Dates Soderblom et al. (1974)

NASA/JPL-Caltech/Galileo Mission

- 2 populations of craters:
- (I) "Fresher" (young) craters
 - < I km diameter
- (2) Degraded larger craters
- → Role of last major impact?

3 populations of craters: (I) "Fresher" (young) craters < I km diameter (2) Degraded craters < 6 km (3) Degraded craters > 10 km → Change in early large impactor flux/environment? NASA/JPL-Caltech/Galileo Mission

> 951 Gaspra 18x11x9 km S Type

Sullivan et al. (2002)

Impacts can also reveal stratigraphy...

Impacts can also reveal stratigraphy...

Vesta

HAMO Cycle 1, F2_370834998, 70 m/pixe

Volcanism

- Volcanism is the melting of materials within a planet and the transport or eruption of these materials onto a planetary surface
- On the terrestrial planets, the molten material, or magma, is silicate rock. For some outer planet asteroids, satellites, and dwarf planets, the magma could be water ice or molten sulfur

lo's silicate volcanism

Icy satellite volcanic resurfacing?

Enceladus "Volcanic" Plumes...

NASA/JPL/SSI Cassini Mission

- Satellite is only 500 km diameter, yet internally active!
- Subsurface liquid water? Newest astrobiology "hotspot" in the solar system...

Tectonism

- Tectonism is the deformation of the surface and interior of a planet, driven by either internal (volcanic, tidal, etc.) or external (impact) forces
- Tectonic processes produce faults, fractures, and folds with morphologies dependent upon the style of local deformation as well as the physical properties/conditions of the surface materials

lapetus

Ridges, Grooves, and Fractures Impact-forced tectonism?

Tectonic features related to

- (1) impact disruption
- (2) differentiation (?)
- (3) volcanic processes (?)

Vesta

Erosion

- Erosion or gradation is the wearing down of high places and the filling in of low places on a planetary surface
- For airless bodies, these erosional and depositional processes are driven by gravity
- The primary means of moving materials by gradation on airless bodies is via "mass wasting", or the downslope movement of surface materials
- On airless bodies, gradational processes can produce landslides, talus cones, slope streaks, and sediment "ponds"

Crater Degradation State

Sedimentary "ponds" on Eros

NASA/JHU-APL/Cornell/NEAR Mission

Robinson & Proktor (2002)

Other Clues about Process and Properties from Geologic Observations

- Imaging and topographic/shape data enable estimates of primitive body volume. Combined with mass estimates from spacecraft tracking gives an estimate of density
- Imaging and tracking of asteroid satellites is another way to determine mass and estimate density
- Mass and density combined with compositional data can enable an estimate of porosity
- Topographic/shape information combined with gravity mapping data (from orbital campaigns) enables an estimate of the locations and magnitudes of crustal density anomalies
- Considerable confusion about the geology of comet nuclei

Density & Porosity

Porous "rubble piles" <---> Solid rock

Most asteroids are rocky, many are very porous

253 Mathilde 66x48x46 km C Type

How can such a small object survive such an intense pounding?

NASA/JHU-APL/Cornell/NEAR Mission Porous rubble pile nature of many asteroids absorbs impact shock 12

25143 Itokawa 535×294×209 meters S Type, density = 1.9 g/cm^3

Where are the impact craters?

Is Itokawa a rubble pile?

JAXA/Hayabusa Mission

Vesta

Topography from stereo imaging (left) can be removed from gravity signature to reveal crustal density anomalies (right)

Comets: Increasing the sample imaged by spacecraft

Halley: 1985

Borrelly: 2001

Wild-2: 2004

Tempel-1: 2005, 2011

Hartley-2: 2010

Comet Tempel-1

Deep layers wrap around, roughly parallel to "top" facet.

Regional differences in erosion and a wide variety of topographic forms

Why is the boundary between regions parallel to the layers? Draping? Regional erosion?

Many puzzles!

Geology of Tempel 1

Physical character:
mean density of 0.4 ± 0.2 g cm⁻³
Geologic units
layer structures: deep/shallow?
"smooth" deposits and flows
relation between types of layers
(photometric variations?)

Processes
venting, pitting, and deposition
scarp retreat
cratering
regional variations
relation to jet structures

Is this a pristine object? Puzzles...

NASA/JPL/Cornell (P.Thomas), Deep Impact Mission

Wild-2:

- Rugged surface
- Circular depressions
- •What are they?
- Craters?
- Sublimation pits?

The darker area with close round depressions is the part of Tempel 1 that most closely resembles Wild-2

Wild-2

The Future?

- Rosetta mission at 67P/Churyumov–Gerasimenko
- First close-up look at Ceres with Dawn -- will this be our first close-up look at a KBO?
- New Horizons first close-up look at Pluto/Charon
- OSIRIS-REx mission to 1999 RQ₃₆ (C-type)
- New Discovery, New Frontiers, ESA opportunities...
- Expectation is that increased sampling will result in increased diversity of surface geologic processes, and probably increased puzzles...

,

processes that shaped the solar system operated,

interacted, and evolved over time?

Crosscutting Themes	Priority Questions	Key Bodies to Study
Building new worlds	1. What were the initial stages, conditions and processes of solar system formation and the nature of the interstellar matter that was incorporated?	Comets, Asteroids, Trojans, Kuiper belt objects (see Chapter 4)
	2. How did the giant planets and their satellite systems accrete, and is there evidence that they migrated to new orbital positions?	Enceladus, Europa, Io, Ganymede, Jupiter, Saturn, Uranus, Neptune, Kuiper belt objects, Titan, rings (see Chapters 4, 7, and 8)
	3. What governed the accretion, supply of water, chemistry, and internal differentiation of the inner planets and the evolution of their atmospheres, and what roles did bombardment by large projectiles play?	Mars, the Moon, Trojans, Venus, asteroids, comets (see Chapters 4, 5, and 6)
Planetary habitats	4. What were the primordial sources of organic matter,	Comets, asteroids, Trojans, Kuiper belt objects,
	and where does organic synthesis continue today?	uraniaun satellites, Enceladus, Europa, Mars, Tîtan (see Chapters 4, 5, 6, and 8)
	5. Did Mars or Venus host ancient aqueous environments conducive to early life, and is there evidence that life emerged?	Mars and Venus (see Chapters 5 and 6)
	6. Beyond Earth, are there modern habitats elsewhere in the solar system with necessary conditions, organic matter, water, energy, and nutrients to sustain life, and do organisms live there now?	Enceladus, Europa, Mars, Titan (see Chapters 6 and 8)
Workings of solar systems	7. How do the giant planets serve as laboratories to understand Earth, the solar system, and extrasolar planetary systems?	Jupiter, Neptune, Saturn, Uranus (see Chapter 7
	8. What solar system bodies endanger Earth's biosphere, and what mechanisms shield it?	Near-Earth objects, the Moon, comets, Jupiter (see Chapters 4, 5, and 7)
ve	9. Can understanding the roles of physics, chemistry, geology, and dynamics in driving planetary atmospheres and climates lead to a better	Mars, Jupiter, Neptune, Saturn, Titan, Uranus, Venus (see Chapters 5, 6, and 8)
S	understanding of climate change on Earth?	
	10. How have the myriad chemical and physical	All solar system destinations.

Primit Bodie

(see Chapters 4, 5, 6, 7, and 8)

Summary

- Geologic and geophysical observations of primitive (or "semi-primitive") bodies enable assessment of the role of impact, tectonic, erosional, and volcanic processes in their origin and evolution
- Some geologic observations, like density, porosity, and the spatial variations in impact crater size frequency distribution and degradation state, could provide constraints on formation models and surface/interior evolutionary pathways
- What surprises await among the giant unsampled populations of KBOs, Centaurs, and Trojans?

30 April 2012

