Missions to Primitive Bodies: Past, Present, and Future

T. V. Johnson

Jet Propulsion Laboratory

California Institute of Technology

Approach

- Relationship of meteorites to asteroids and comets
- Highlights of results from primitive bodies missions
- Need for new in situ techniques to address Decadal Survey questions

Early thoughts on Primitive Bodies Missions – We don't need them.

- "Why bother? We have samples of cosmic material delivered to our doorsteps free of charge by God – in the form of meteorites." Harold Urey (one of founders of modern geochemistry) – ca 1965
- Urey, and others, were convinced that the in-fall of cosmic material would cover the Moon and other airless bodies with ordinary chondrites. Hard to even get approval in this era for proposals to study asteroid spectra etc. –
 "You'll just see chondrites."

Post-Apollo

- "Now we have samples of the Moon delivered free of charge to our doorsteps by NASA."
 Harold Urey - ca 1970
- The 'primitive' Moon was NOT primitive and NOT chondritic

Telescopic Era (1970-1980) Diversity of Asteroids

- Spectral survey Vesta et al.
- Albedos Matson thesis
- Connection to meteorites
- Comets low albedos also
- Distribution of asteroid types with AU
- Mission studies looked at different types –
 Vesta/Ceres identified as important targets

Vesta:

First Asteroid-Meteorite Connection

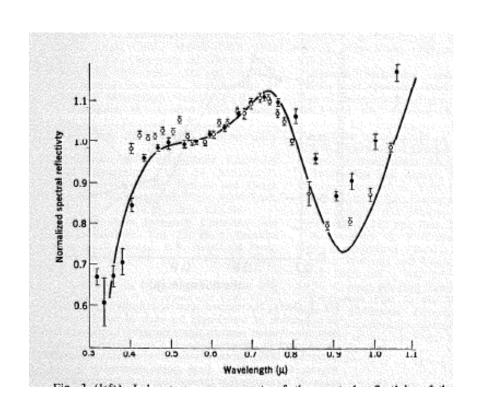
The Asteroid VESTA:

Spectral Reflectivity and Compositional Implications

Thomas B. McCord+

John B. Adams*

and


Torrence V. Johnson+

+ Planetary Astronomy Laboratory Department of Earth & Planetary Sciences Massachusetts Institute of Technology Cambridge, Massachusetts

* Caribbean Research Institute College of the Virgin Islands Christiansted, St. Croix, U.S.V.I.

Submitted to Science April 1970

Contribution #7 of the Planetary Astronomy Laboratory

Meteorites-Asteroids Albedo and Spectral Reflectance

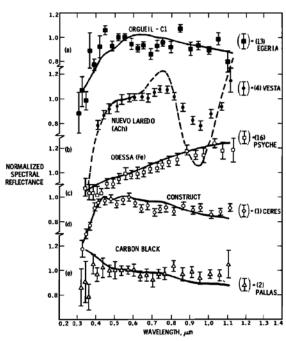


Fig. 16. Normalized spectral reflectance (0.3-1.1 μ m) for five asteroids compared with aboratory reflectances of meteorites, our mixture of montmorillonite and carbon black, and pure carbon black. The asteroid spectral reflectances are from *Chapman et al.* [1973] and *McCord et al.* [1970]. The curve for Nuevo Laredo also comes from *McCord et al.* [1970].

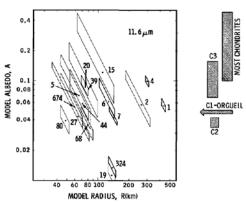


Fig. 15. Asteroid model albedos (bolometric Bond) and model radii, modified after *Matson* [1972]. The regions assigned to each asteroid represent the error limits on model parameters and 11.6-μm infrared photometry. Along the right-hand ordinate are shown the approximate ranges of meteorite reflectances taken from this study, *Adams and Filice* [1967], *Chapman and Salisbury* [1973], and *Egan et al.* [1973].

First Primitive Body Mission 1986: Giotto – Comet Halley

- Low albedo
- CHON particles
- D/H not terrestrial

Asteroids

List of asteroids visited by spacecraft

From Wikipedia, the free encyclopedia

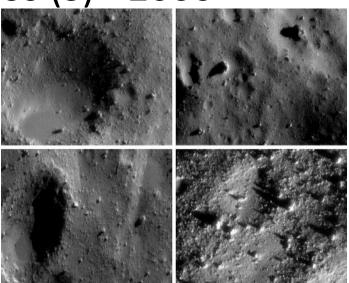
The following table lists asteroids that have been visited by spacecraft.

Name ♦	Diameter (km)	Discovered \$	Spacecraft ≑	Year(s) ▼	Closest Approach \$ (km)	Notes ♦
4 Vesta	529	Mar 29, 1807	Dawn	2011–2012	approx. 200	Orbiting; planned to break orbit in July 2012
21 Lutetia	120×100×80	Nov 15, 1852	Rosetta	2010	3,162	Flyby
2867 Šteins	4.6	Nov 4, 1969	Rosetta	2008	800	Flyby
132524 APL	~2.5	May 9, 2002	New Horizons	2006	101,867	Distant flyby
25143 Itokawa	~1	Sep 26, 1998	Hayabusa	2005	0	Landed; returned samples to Earth
5535 Annefrank	4.0	Mar 23, 1942	Stardust	2002	3,079	Flyby
433 Eros	13×13×33	Aug 13, 1898	NEAR Shoemaker	2001	0	Landed
2685 Masursky	15-20	May 3, 1981	Cassini	2000	1,600,000	Distant flyby
433 Eros	13×13×33	Aug 13, 1898	NEAR Shoemaker	2000	35	Orbited; first asteroid studied from orbit
9969 Braille	2.2×0.6	May 27, 1992	Deep Space 1	1999	26	Flyby; followed by flyby of Comet Borrelly
433 Eros	13×13×33	Aug 13, 1898	NEAR Shoemaker	1998	3,827	Flyby
253 Mathilde	66×48×46	Nov 12, 1885	NEAR Shoemaker	1997	1,212	Flyby
243 Ida	56×24×21	Sep 29, 1884	Galileo	1993	2,390	Flyby; discovered Dactyl (moon)
951 Gaspra	18.2×10.5×8.9	Jul 30, 1916	Galileo	1991	1,600	Flyby; first asteroid visited by a spacecraft

First S-Asteroid Encounters – Main Belt Galileo

• Gaspra – 1991

- Ida 1993
 - Discovery of Dacty, first confirmed asteroid moon

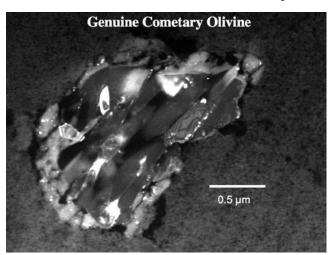

NEAR – Shoemaker NEO's

- Flyby Mathilde (C) 1997
 - Low porosities of asteroids ~50%

• First Orbiter/Lander: Eros (S) - 2000

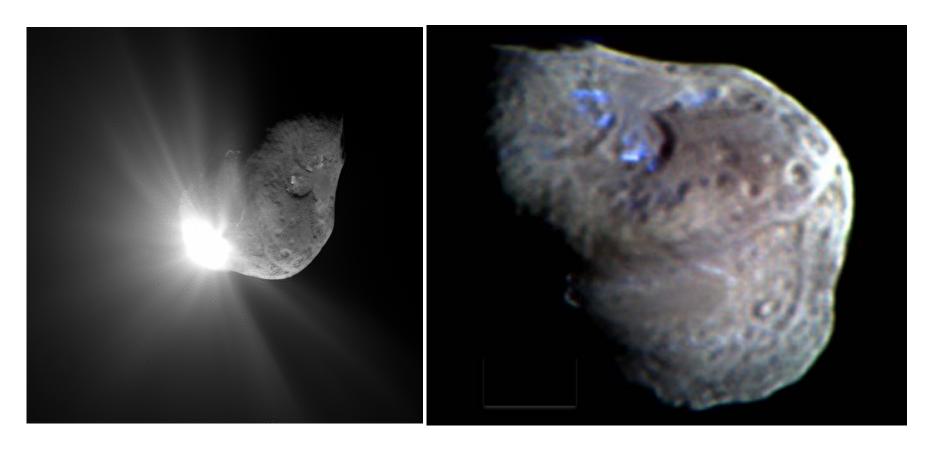
Deep Space 1 First Ion Drive Planetary Mission

Comet Borelly: 2001


Stardust

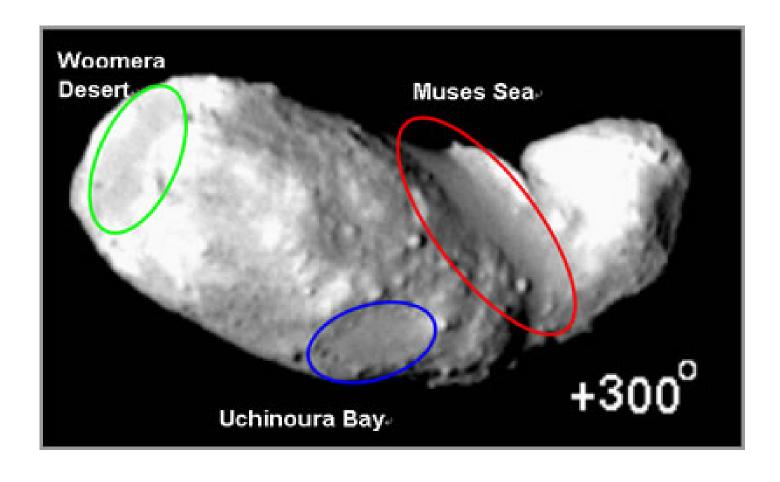
NEO flyby 2003

— AnneFrank


First comet sample return – Wild 2 2006

Deep Impact

• Temple 1 − 2005

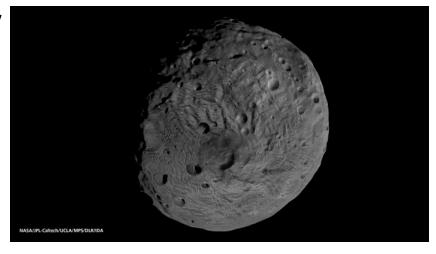


Stardust NExT: Flyby of Deep Impact Target, Temple 1 - 2011


Hayabusa First S-type NEO sample return - 2010

Itokawa

Rosetta


- Steins 2008 flyby
- Lutetia 2010 Large main belt asteroid flyby:
 Differentiated Asteroid?

Comet G-M – primary target

DAWN – Vesta and Ceres First Main Belt Asteroid Orbiter

 Vesta – currently in orbit

 Composition – Evidence for link to HED meteorites => "Effective sample return from a differentiated asteroid"

Future Missions

- Osiris-Rex: NF 3
 First C-type NEO Sample Return
- Comet Sample Return: proposed
 NF 4 mission

What have we learned?

- "Primitive" Bodies span a range of different bodies and evolutionary histories
- Dynamical re-arrangement of solar system now a major issue
- Decadal Survey
 - Recommended observations imply multiple sample returns - unlikely
 - In Situ investigations needed to address goals