
MIT Lincoln Laboratory
Overview-1

DMB 6/27/2012

Classical Communication
To and From Space

Don M Boroson
MIT Lincoln Laboratory

25 June 2012

This work is sponsored by National Aeronautics and Space Administration under Air Force Contract #FA8721-
05-C-0002.  Opinions, interpretations, recommendations and conclusions are those of the authors and are not 
necessarily endorsed by the United States Government.



MIT Lincoln Laboratory
Overview-2

DMB 6/27/2012
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All the High-Rate Links Anyone Could 
Be Interested In (until we travel to the stars)
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Over six orders of 
magnitude of distance = 
120 dB of technology to 
span
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All the High-Rate Links Anyone Could 
Be Interested In (until we travel to the stars)
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Highly lossy links means 
always receive classical 
signals
Far-field means no spatial 
information about source
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Radio Frequency (RF) vs Optical
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Radio Frequency (RF) vs Optical
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Radio Frequency (RF) vs Optical
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Opportunity/Challenge –
Achieve Narrow-Beam Benefits of Optical
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104 times higher 
frequency has potential to 
greatly increase data rate 
capabilities
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receivers.  Optical technology has 
potential to have 7-9 dB better 
efficiency on top of “f” advantage.

/ Pre-Amplified

(Binary Pulsed)

(Binary Pulsed)

0.1



MIT Lincoln Laboratory
Overview-14

DMB 6/27/2012

• Factoids

• Opportunities & challenges

• The technology

• An example
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Parts of a Free-Space
Communications System    – RF            
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Parts of a Free-Space
Communications System - Optical

Digital 
Processor Modulator

Pt/Trk
Actuator

EDFA

Opt
Osc

PAT
Control

Diplexer

Receiver
Front EndDemod

Digital 
Back End

Telescope
3” – 36”

(Erbium)-Doped
Fiber Amp

Diode 
Laser

Single Mode Fiber

Offset 
(Point-
Ahead) 

Steering

Opt
(Local)
Osc

Various types of 
receiver/demods

Other 
Stabilization

Devices

2 slightly 
wavelength-
offset optical 

carriers



MIT Lincoln Laboratory
Overview-17

DMB 6/27/2012

What’s Hard About Optical?
In Both Vacuum and Atmospheric Links

• Finding (acquiring) where to point
• Stabilizing (tracking) very narrow beam in face of platform 

micro-vibrations
• Subsystems must withstand vibrations of launch, wild 

temperature swings, and radiation
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What’s Hard About Optical?
In Atmospheric Links

• Transmitting beam up through atmosphere and preserving 
high gain in face of turbulence

• Receiving low-power signal via large aperture and coupling 
light into single-mode (or other small) receiver in face of 
turbulence

• Extremely narrow-band filtering of received light when pointed 
near sun

• Dealing with wide power fluctuations
• Clouds, fog, trees…..
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What’s Hard About Optical?
Technologies

• High-optical-power, low-electrical-power transmitters that can 
achieve high speed, high peak powers, high optical quality, etc

• Receiver components and architectures that can achieve near-
optimum performance at desired rates and desired aperture 
sizes

• Present-day photon-counting technologies not simply suitable 
for space environment
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• Factoids

• Opportunities & challenges

• The technology
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To be world’s first lunar lasercom

LADEE Launch
August 2013

– 1 month cruise
– 1 month lasercom orbits
– 3 months science orbits

Lunar Laser Communication 
Demonstration Program

Space terminal to fly on Lunar Atmosphere and 
Dust Environment Explorer (LADEE)

Main lasercom goals
– 622 Mbps downlink
– 20 Mbps uplink
– Sub-centimeter 

real-time ranging
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Lunar Laser Communication 
Demo System
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Lunar Lasercom Space Terminal 

2 Axis
Gimbals

Inertial 
Stabilization 
Unit

10-cm 
Beryllium 
Telescope 

Behind Solar 
Window

Controller 
Electronics

Mounted inside 
spacecraft

Pulse Position Modulation Modem
0.5 W doped-fiber amplifier

Full coding / decoding
Mounted inside spacecraft

Optical Module
Fiber-coupled to Modem

Mounted on Earth-facing panel

• Space Terminal in final 
stages of integration

• To be delivered to 
spacecraft October

30 kg total
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Lunar Lasercom Ground Terminal

14 m diameter
80 nm width, 4 nm thick

• Superconducting nanowire single photon 
detector receiver system built at MIT / LL

• Coupled to receive telescopes via custom 
multi-mode polarization-maintaining fiber

40-cm downlink telescopes

15-cm 
uplink
telescopes

• Ground Terminal in final 
stages of integration

• To be operated outdoors 
at MIT LL for 6 months

4x10-Watt 
uplinks
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Summary

• Present technologies adequate for achieving wide range of 
high-performance (optical) communications systems

• Stage is set for optical transmission and reception based 
on quantum properties of light


