Classical Communication To and From Space

Don M Boroson MIT Lincoln Laboratory

25 June 2012

This work is sponsored by National Aeronautics and Space Administration under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government.

- Factoids
- Opportunities & challenges
- The technology
- An example

The Diffraction Limit

10 ···· Gbps					wo term part sup	inals 40 porting	0,000 k g 10 Gb	m ps	
1 ⊶ Gbps				 					
100 Mbps				 					
10 Mbps				 					
10 Mbps 1 Mbps				 GEO			AU		
10 Mbps 1 Mbps	AIR	-TO-AIR	SATS	 GEO NEAR-EARTH SATS			AU MARS MERCUR VENUS	SATURN	URANUS NEPTU

The Diffraction Limit

DMB 6/27/2012

All the High-Rate Links Anyone Could Be Interested In (until we travel to the stars)

All the High-Rate Links Anyone Could Be Interested In (until we travel to the stars)

Radio Frequency (RF) vs Optical

Overview-7 DMB 6/27/2012

Radio Frequency (RF) vs Optical

Overview-8 DMB 6/27/2012

Radio Frequency (RF) vs Optical

Overview-9 DMB 6/27/2012

Opportunity/Challenge – Achieve Narrow-Beam Benefits of Optical

Overview-10 DMB 6/27/2012

Challenge – Achieve Optimum Coded Efficiency

*Channel/noise-limited capacities Arbitrary modulations

Challenge – Achieve Optimum Coded Efficiency

*Channel/noise-limited capacities Arbitrary modulations

MIT Lincoln Laboratory

Challenge – Achieve Optimum Coded Efficiency

*Channel/noise-limited capacities Arbitrary modulations

MIT Lincoln Laboratory

- Factoids
- Opportunities & challenges
- The technology
- An example

Parts of a Free-Space Communications System – RF

Overview-15 DMB 6/27/2012

Parts of a Free-Space Communications System - Optical

Overview-16 DMB 6/27/2012

- Finding (acquiring) where to point
- Stabilizing (tracking) very narrow beam in face of platform micro-vibrations
- Subsystems must withstand vibrations of launch, wild temperature swings, and radiation

- Transmitting beam up through atmosphere and preserving high gain in face of turbulence
- Receiving low-power signal via large aperture and coupling light into single-mode (or other small) receiver in face of turbulence
- Extremely narrow-band filtering of received light when pointed near sun
- Dealing with wide power fluctuations
- Clouds, fog, trees.....

- High-optical-power, low-electrical-power transmitters that can achieve high speed, high peak powers, high optical quality, etc
- Receiver components and architectures that can achieve nearoptimum performance at desired rates and desired aperture sizes
- Present-day photon-counting technologies not simply suitable for space environment

- Factoids
- Opportunities & challenges
- The technology
- An example

Lunar Laser Communication Demonstration Program

To be world's first lunar lasercom

Space terminal to fly on Lunar Atmosphere and Dust Environment Explorer (LADEE)

LADEE Launch August 2013

- 1 month cruise
- 1 month lasercom orbits
- 3 months science orbits

Main lasercom goals

- 622 Mbps downlink
- 20 Mbps uplink
- Sub-centimeter real-time ranging

MIT Lincoln Laboratory

Overview-21 DMB 6/27/2012

Lunar Laser Communication Demo System

Lunar Lasercom Space Terminal

Pulse Position Modulation Modem 0.5 W doped-fiber amplifier Full coding / decoding Mounted inside spacecraft 10-cm Beryllium Telescope Behind Solar Window

Inertial Stabilization Unit

2 Axis Gimbals

Optical Module Fiber-coupled to Modem Mounted on Earth-facing panel

Controller Electronics Mounted inside spacecraft

- Space Terminal in final stages of integration
- To be delivered to spacecraft October

30 kg total

MIT Lincoln Laboratory

Overview-23 DMB 6/27/2012

Lunar Lasercom Ground Terminal

- Present technologies adequate for achieving wide range of high-performance (optical) communications systems
- Stage is set for optical transmission and reception based on quantum properties of light