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Gravitational Waves

[A perturbation of ~Minkowski space-timej
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Linearized Einstein’s Equations

e Near flat spacetime, metric n is corrected by h (relative correction in time? or length?)
2
ds” = guvdx”dxv guv = nyv + huv’
® “trace-reversed perturbation” satisfies wave eqn, sourced by energy and momentum

nh,, =—-16nT,,

Too: energy density, To1,02,03: momentum density, T11,12,..33: stress

analogous to EM: I:IAM =4rJ y

® | eading multipole radiation is mass quadrupole (analogous to Electric Quadrupole)

. Q ML*Q* My?
d d d

® Magnitude is very very small

1 m away from the most powerful H-bombs tested (2x10'7J): h ~ 10?7

Total mass of 5M¢ colliding at v~0.3c, at VIRGO cluster: h ~ 3x1077
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Evidence of Gravitational Waves
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-25
directions of gravity waves 30
e Hulse-Taylor binary pulsar discovered in 1974 —35
e Two 1.4 Mg neutron stars orbiting around each ST T T T T
other with period /.75h, one emlttlng radio pUlSGS —40 1975 1980 1985 1990 1995 2000 2005
® Energy carried away by GW causing orbital Year  [Weisberg 2004]
period to shrink
e Current GW frequency (twice orbital freq): 71uHz
e Orbital decay will cause merger in 300M years estimated merger rate
(GW frequency will reach 10Hz - kHz during 20 - 1000/Myr
merger, the final several minutes) in Milky Way

[e.q., Kalogera et al 2004]
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Sources of Gravitational Waves
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Frequency [Hz]
- s - .
Space Based Detectors Ground Based Detectors
merging supermassive black holes merging neutron stars/black holes
smaller BHs falling into supermassive BHs rotating aspherical neutron stars
binaries with larger separations collapsing stars
stochastic background stochastic background
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Ground-Based Detectors

e How do we detect gravitational waves on the earth?
- Effect of GW in a “small region” (compared with wavelength)
= Optical Interferometry with short arms
- Quantum enhancement on the ground
- Limitations of GW detection on the ground
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Plane Gravitational Wave

e Coordinates can be chosen such that a plane wave along z direction can be written as

g/,tv — nuv +h/,tv’

h(t—-z) h(t—2z) O
hlyTT(t,X,y,Z) — hx (l’ — Z) —h+(l' — Z) O , l’] — x,y,z
0 0 0

This is called the TT gauge because h is transverse, and traceless.

h: x are the two polarizations of the plane GW

This coordinate system is convenient in describing wave propagation, but
not for describing relative motions of nearby objects
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Influence of GW on Light and Matter

... in a region with spatial size much less than GW wavelength
we go to the Local Lorenz Frame

® |ow-velocity objects feel tidal gravity force:

. b b 0
M5! =3 hy x“+F’ hy=| h, —h, 0
0 0 0
e array of free masses will be distorted with strain ~ h
A

squeezin
q g squeezing stretching

Stretching

+ polarization x polarization

® [ight propagation is unaffected by gravitational wave
® Problem reduced to the measurement of a (very weak) classical force field
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Laser Interferometer Gravitational-wave Observatory (LIGO) 0
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Laser Interferometer Gravitational-wave Observatory (LIGO) "0
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LIGO Hanford, WA site ]
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LIGO Livingston, LA site
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Ground-Based Laser Interferometer GW Detector
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Schematic drawing of LIGO Detectors
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Sensitivity achieved in first-generation LIGO

L .- 2 L L
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achieving 2x10-23/rtHz at ~ 200 Hz

Spectral Density: Noise Power Per Frequency Band h,,ms ~Af- Sh
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Michelson Interferometer: Sensitivity Estimate

Lh/21 testjmass input light
mirror
Y arm X-arm o Y-arm
. Lh/2
Lasloer(L_;g il beamsplitter — 21 h
, o=—1L
—_— / 1 A
Xarm
test-mass phasor diagram
mirror

+ polarizad plane GW along z axis

e Resolvable phase: ~1/(Number of Photons)'?
® Photon Number: PowerxDuration/(Energy of Photon)

1/2
i / / dkm \[ SW
assuming 21 ~1/2
= S L =75-10"| — || — | Hz
A=1pm 27z h 27: \( L )( I, j

rms error “shot noise” spectral density
(noise power/frequency band)

initial LIGO 2x10-23
factor of 300-400 away!
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Resonant Enhancement of Sensitivity
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within light storage time, GW already changes
sign. Resonant enhancement deteriorates!
2/T

JI+(Q/y)
p

\/W— A |ho, \/1+(Q/}/)2\
h

- 2nL\ I, 2/T
\_ _J

Cavity Gain =
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LIGO I:

Power-recycling gain ~ 50 -- 60
[noise ~ 1/(Mich. input power)'/?]

# of bounces in arm cavity ~40
Total factor of improvement ~300

Improvement is only below the
bandwidth of the cavity.
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Radiation Pressure Noise

Lh/2 l testjmass
mirror
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mirror

+ polarizad plane GW along z axis
without cavity ...
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Standard Quantum L

If we place the two types of noise together
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Their dependences on power and cavity gain are opposite

IO wO
L\ hc

2h
mQ*

rad pres

h

S

Monday, June 25, 12



Quantum Optical Noise in LIGO-I
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Generations of GW Detectors
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Where does quantum noise come from?
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Quadratures, Homodyne Detection and Squeezing ™

® (QOptical field close to wo can ben written in the quadrature representation

E(t)=E (t)cosw,t+ E,(1)sinw,t E, ,(t): slowly varying

® Act as modulations when superimposed with single-frequency carrier at wo

E»

E;

phasor diagram
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Quadratures, Homodyne Detection and Squeezing ™

® (QOptical field close to wo can ben written in the quadrature representation

E(t)=E (t)cosw,t+ E,(1)sinw,t E, ,(t): slowly varying

® Act as modulations when superimposed with single-frequency carrier at wo

carrier E1
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phasor diagram
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Quadratures, Homodyne Detection and Squeezing ™

® (QOptical field close to wo can ben written in the quadrature representation

E(t)=E (t)cosw,t+ E,(1)sinw,t E, ,(t): slowly varying

® Act as modulations when superimposed with single-frequency carrier at wo

phase
quadrature

E> A amplitude
quadrature
E,

carrier

A cos mot

phasor diagram
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Quadratures, Homodyne Detection and Squeezing ™
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Quadratures, Homodyne Detection and Squeezing ™

® (QOptical field close to wo can ben written in the quadrature representation

E(t)=E (t)cosw,t+ E,(1)sinw,t E, ,(t): slowly varying

® Act as modulations when superimposed with single-frequency carrier at wo
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S g, Detection
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quadrature
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Quadratures, Homodyne Detection and Squeezing '

e Heisenberg Uncertainty In the Frequency Domain
S S —1S FP=1

aa;  a,a, aa,

Minimum Uncertainty
Gaussian States are:

vacuum state
coherent states
squeezed vacuua
squeezed states
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Quadratures, Homodyne Detection and Squeezing

e Heisenberg Uncertainty In the Frequency Domain
S S —1S FP=1

aa;  a,a, aa,

Minimum Uncertainty
Gaussian States are:

vacuum state
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Quadratures, Homodyne Detection and Squeezing '

e Heisenberg Uncertainty In the Frequency Domain
S S —1S FP=1

aa;  a,a, aa,

Minimum Uncertainty
Gaussian States are:

vacuum state
coherent states
squeezed vacuua
squeezed states

E> coherent state

E;

vacuum
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Quadratures, Homodyne Detection and Squeezing '

e Heisenberg Uncertainty In the Frequency Domain
S S —1S FP=1

aa;  a,a, aa,

Minimum Uncertainty
Gaussian States are:

vacuum state
coherent states
squeezed vacuua
squeezed states

coherent state

E;
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Quadratures, Homodyne Detection and Squeezing '

e Heisenberg Uncertainty In the Frequency Domain
S S —1S FP=1

aa;  a,a, aa,

Minimum Uncertainty
Gaussian States are:

vacuum state
coherent states
squeezed vacuua
squeezed states

E coherent state
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Quadratures, Homodyne Detection and Squeezing

e Heisenberg Uncertainty In the Frequency Domain
S S —1S FP=1

aa;  a,a, aa,

Minimum Uncertainty
Gaussian States are:

vacuum state
coherent states
squeezed vacuua
squeezed states

coherent state

Monday, June 25, 12



Quadratures, Homodyne Detection and Squeezing '

e Heisenberg Uncertainty In the Frequency Domain
S S —1S FP=1

aa;  a,a, aa,

Minimum Uncertainty
Gaussian States are:

vacuum state
coherent states
squeezed vacuua
squeezed states

coherent state

E;

——
phase
squeezed
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Quadratures, Homodyne Detection and Squeezing '

e Heisenberg Uncertainty In the Frequency Domain
S S —1S FP=1

aa;  a,a, aa,

Minimum Uncertainty
Gaussian States are:

vacuum state
coherent states
squeezed vacuua
squeezed states

coherent stat7/\ amplitude
squeezed

E —
/

phase
vacuum U squeezed
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Quadratures, Homodyne Detection and Squeezing '

e Heisenberg Uncertainty In the Frequency Domain
S S —1S FP=1

a;a; — dd, aqdy

Minimum Uncertainty
Gaussian States are:

vacuum state
coherent states

squeezed vacuua amplitude
squeezed states squeezed
coherent stat7/\ amplitude
squeezed
E,
— i
/

phase
vacuum U squeezed
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Quadratures, Homodyne Detection and Squeezing '

e Heisenberg Uncertainty In the Frequency Domain
S S —1S FP=1

alal azaz a]az
Ll - - A
Minimum Uncertainty phase
Gaussian States are: squeezed

vacuum state
coherent states

squeezed vacuua amplitude
squeezed states squeezed
coherent stat7/\ amplitude
squeezed
E,
— i
/

phase
vacuum U squeezed
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Amplitude Noise & Phase Noise

AII/2X
AII/Z[IIQEI/(MQZ)]
B amplitude B
A fluctuation N
E, = E,
phase
fluctuation -~
X rce
Incoming out-going
vacuum field

® squeezing phase noise will lower shot noise, but increase radiation-pressure noise
(good for first-generation detectors, but doesn’t help beating the SQL)

® squeezing a combination of input amplitude and phase will help, but only narrow band
® squeezing a frequency-dependent combination will help beat the SQL broadband.

® detecting a combination of output amplitude and phase may even completely
remove back-action noise
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Surpassing the SQL in a Michelson interferometer °

Filter Cavity Il

3

<
Arm Cavity

T
I\
l\
\ 2
>
3
> £
S
O
g| |
=
| \
|| -
Arm Cavity
Laser = I || % Laser
\
* | Squeezed
_>
\k ; Circulator Vacuum
*
Squeezed| . _ __ Filter Cﬂ’ityl o
Vacuum | /r > ____——4—’:"‘1
< — —
\_ \ 4
Photo-
detector
frequency dependent
Input squeezed state

[Kimble et al., 2001]
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Frequency Dependent Squeezing & Detection

107,
102!
10722,

10—23;

\Si(f) (1/VHzZ)

10—24;

10755 NG
1 10 100 1000 104

J (Hz)
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Freqguency Dependent Squeezing & Detection

10720,

10741 ;

N
1072,
= - %
— SN .
o | o\ @ A.7
2 10_235 "e,,,o ) gl
o) : ) -~
{, ~
» i l/})/} ,/'_, 10 dB o
w24 =T Input squeezing
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1 10 100 1000 10

10—25
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Frequency Dependent Squeezing & Detection

107V,
10—21: /r%'
- \0
N _ @)
S 10722 N
= S
: : U
2 10723, QQQ/)
o) [
T | . 10 dB B
10_24: Input squeezmgg
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Freqguency Dependent Squeezing & Detection

10720, SRS
; g 1/4
> (loss - squeeze factor)
10_21; —O_@ 10dB input squeezing and
- e 1% loss
s i 3
< 10_22§ S | Loss Limit = 1/5 SQL
- |
~ 1075
A i
Ik | 10dB |
10-24 iInput squeezing
10—25 e e L
1 10 100 1000 10%
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Freqguency Dependent Squeezing & Detection

10720, SRS
; g 1/4
> (loss - squeeze factor)
21\
107 D 10dB input squeezing and
2 | @/6 1% loss
- S
SETRRNVAN imi
< X L Loss Limit = 1/5 SQL
~ |
~ 1075
A i
Ik | 10dB |
10-24 | input squeezing
f =l
_25' lossless, with filters ol
107 0 100 1000 104
f (Hz)

Quantum Enhancement of Sensitivity Requires Low Loss!
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Generation of Squeezed Vacuum

Nonlinear Optics

_ 3
H,=yE
quantize
—_ T f T
H=..+ a2w0awo+ﬂaa)o—£2 + a2w0aw0+QawO—Q

when non-linear medium pumped with 2wo
and phase-matching condition satisfied

d<
_ i
= .t J' oy |:A2w0aw0+£2awo + A2w0aa)o+£2aw0 Q:|
this term becomes effective and generates squeezing

. >0
cavity resonant

T=0f]  with both « f’/‘;‘;e;zzd
wo and 2wo _ ’
_ pumped with
nonlinear 200

medium



Squeezing for GW Detectors

10
g ﬂ
= 81 2 1107V
Al %A 10720 ¢ ﬂ{v 3
2 4V 58
e 2} || °F R/\
% 0 'é'g ' 110718
£ =% 07 | |
6l g
8 LR R I R R j1o
-105 ??(2) L ;4 ’ L : 10_2210_0 200 300 400500600 800 I o 3 4k sk
10 10 Frequency[Hz]10 10 Frequency (Hz)
Low-Frequency Squeezing [GEO Squeezing result,
K. McKenzie et al., 2004 LIGO Scientific Collaboration, 2011]
e First demonstration of squeezing in the GW band (sub kHz) [K. McKenzie et al., 2004]
® Squeezing injection at the Caltech 40 m prototype lab [K. Goda et al., 2008]
e 3.5 dB Squeezing at GEO 600 detector [LSC, 2011; H. Vahlbruch, 2010]
e 2+dB squeezing of LIGO Hanford, achieving best-ever sensitivity to GWs at 200+Hz.
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Squeezing Status & Prospects

T T T T T T T T T T T

—— Reference

— Reference + Squeezing
10%'L
3
.% 10-22_
&
-23 , Loy , . , , L |
10 10° 10°
Frequency (Hz)
initial LIGO | Advanced LIGO | aim of future LIGO
total loss 55-60% 20% <2%
detected 2+dB 6dB 10-15dB

[slide & numbers from Sheila Dwyer, GW Adv Detector Workshop, 2012]
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Low-frequency barrier on the earth?

e Suspension Thermal Noise

28

= a pendulum’s thermal noise seems a strong limitation

- other methods are being considered
= magnetic levitation
= juggling mirrors?
- atom interferometers

- TOBA?
4 N
N 4 Z  Tidal forces by
2T + 2 hAnnn T ! :ﬁé yavitational waves
A2 T + % /
T4 2L w / X
I v S5 AY ‘
T
o abry-Perot
! { S 5% interferometer
O
0 x‘z L access down to 0.1 Hz
atom cloud atom cloud experimental prototypes built in Kyoto & Tokyo
A B
[Dimopoulos, Graham, et al.] [Ando et al., 2010]
\_ J
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Gravity Gradient Noise

® Seismic motion driving fluctuations in newtonian gravity field

LLLLLLLL I77799774
@ gravitational @
~\a attraction l
—>

propagation of surface wave
on the surface of the earth

[figure from Pitkin et al. 2011]

e Can be suppressed by monitoring ground motion and subtracting the predicted effect.
® For LIGO (between 10 Hz and 20 Hz)

- 5x suppression required to not affect Advanced LIGO

- 30x suppression required to not affect 3rd generation designs [J. Driggers, 2012]

® Moving detector underground may suppress level and allow better subtraction.
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Space-Based GW Detection

® Space-based GW
- interferometers with long arms (compared with GW wavelength)
- Laser Interferometer Space Antenna (LISA)
= quantum enhancements of a LISA-like mission?
= Other space missions

Monday, June 25, 12

30



Plane Gravitational Wave

e Coordinates can be chosen such that a plane wave along z direction can be written as

g/,tv — nuv +h/,tv’

h(t—-z) h(t—2z) O
hlyTT(t,X,y,Z) — hx(t — Z) —h+(l' — Z) O , l,] — x,y,z
0 0 0

This is called the TT gauge because h is transverse, and traceless.

h: x are the two polarizations of the plane GW

Monday, June 25, 12



Influence of GW on Light and Matter

® Propagation of Light in the “Transverse Traceless” gauge

the scalar
wave equation

g’VV d=0c d,(y—gg"d,®)=0

® = Aexp(ik, x" +io¢) = Aexp(—iwt + ik - X +i6¢)

4 R
flat-space solution plus additional phase due to GW
k' =(0,K) = w(l,k)
s 4-wavevector ang freq 3-wavevector propagation direction)
{
1T
5 slowly 5 S0 huvk“kv A
varying u = @06 6’&\0(\
&%Qé\@ c,
additional phase accumulates 6\%’ S VR
along rays as wave propagates A Qfé“\ @0 @
< O\) (’()
L OQ O\ )
A Q) AFEAY A Q& &'b‘ (\g
801, + L. X, +KL) = [kkon 1, +Ex, + kE)dE S o
0

Light propagation is modified by GW
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Response of Laser Interferometers: TT Gauge

® For larger separation (~ reduced wavelength): oscillatory nature matters

hp = Hpe_ig(t_Z) , p=+,X ... plane wave with propagation direction N
. /w LH e'kik)| g Lk _]
So(t, + L,x, + KL) =|—>—2= 2” e I — ~
c \/ y \—zQL({/ - k.),
GW along z same as before additional phase factor
this favors due to propagation effect
2 4 k orthogonal to N this favors k along N

(transverse wave)
proportional to L

1O\ n2
~08

E 0.6 /4
S 02 ~\
"1/8V

+ polarized 0.0
0 2 4 6 3

QL/(2r)

suppression of phase shift from simple Lh
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Response of Masses and Building an Interferometer

e |In TT gauge: low-speed motion of test masses not affected by GW!
e But test masses won't stay at fixed locations; they will be moving under noisy forces!
e Simplest interferometer
- A, B, and C freely fall + noisy motion
- A sends lighttoBand C
- B and C reflect light back to A
- A compares phase between light from B and light from C.
® This gives signal of (61 + O6d2) - (6d3+Oda)
® Plus local displacement noises (driven by force noise) & shot noise

time
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Arm Length?

e \What if frequency is f= 10mHz.
e Reduced wavelength is A/(211) ~ 5%10°m ~ 5%x10km
® This is the most optimal arm length to reduce effect of local force noise
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very small amount of light (~0.2%) is received by B

to collect most of the light, the mirror diameter has to be > (AL)'2 ~ 71 m
or, reduce to L < D?/A ~ 250 km
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Laser Interferometer Space Antenna

Sx106 km

Earth
Relatlve

Orbit of
?' Spacecraft

Venus

Mercury

L = 5x10%km=5x10"m

Equilateral Triangle, tilted at 60 degrees

36



37

LISA’'s Time-Delay Interferometry (TDI)
"
¢ | IGO-like interferometry does not work for LISA, because : m:e

= light is too weak
= arm lengths are not equal enough

® Armstrong, Estabrook & Tinto’s Time-Delay
Interferometry

= light not bounced back by mirrors, but detected

- interferometry signal synthesized, with length difference
accounted for

o1

— space

1 2 3
1* — ﬁz L2 3
to1(L12)+ t12(2L12): cancels noise of 1
naive view: test masses compare each other’s clock tos(Los)+ t32(2L23): cancels noise of 3
by sending & receiving light pulses subtracting the two doesn’t

6 channels - 3 clock noises = 3 noise-free channels but we can complete the loop!!
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The Real Time-Delay Interferometry

to s/c 2 tos/c 3

Tinto, Estabrook & Armstrong (2002)

® Two Lasers & Two Test masses on board each spacecraft
- 6 additional links
- 3 additional channels of laser noise
- 3 additional test-mass degrees of freedom
- these are arranged to also cancel
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LISA Noise Spectrum

1.E-14

1.E-15

1.E-16

1.E-17
averaged over

Strain amplitude spectral density (1//Hz)

Frequency (Hz)

[LISA Science Requirement Document]

1.E-18 acceleration all directions
noise
1.E-19
1.E-20
longer arm shorter arm
1.E-21
0.00001 0.0001 0.001 0.01 0.1 1
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Squeezing?

D~12.5 km

e Signal mode: very wide Gaussian cut by B’s aperture, flat-top mode
® | ocal oscillator at B must match this mode (mixing in any other mode will only lose)
® Can we squeeze this mode (or approximately this mode)?

- let’s propagate it backwards ...

= it's not possible to squeeze this mode, unless we have larger apertures!!

Being limited by Aperture Size & Acceleration Noise,
LISA cannot be improved quantum mechanically ...
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Beyond LISA: BBO & DECIGO

' " [initial LIGO
- - - Advanced LIGO
— Einstein Telescope
N\ AURIGA/ALLEGRO/NAUTILUS
e —LISA
v —DECIGO
\‘\3 et 5 5 ---BBO
I S T PO N SO EPNS SRS — Pulsar Timing Array (Current)
: : : - - -Pulsar Timing Array (SKA)
: : : : : :
107° 107° 107 107~ 10° 10° 10

Frequency (Hz)
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Photo detector

i

Laser

Beam splitter

\\

.1 Mirror / ‘r

¥ -

'l

DECIGO

W L =1000 km

\
FP cavity "‘*~

Photo detector .

Drag-free spacecraft
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Summary

® | aser Interferometry can be used to detect gravitational waves.
® Squeezing already improves sensitivity of ground-based interferometry.

® Space-based GW detection goes after low-frequency sources
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