Fundamentals of Optical Interferometry for Gravitational Wave Detection

Yanbei Chen California Institute of Technology

Gravitational Waves

A perturbation of ~Minkowski space-time

Linearized Einstein's Equations

Near flat spacetime, metric η is corrected by h (relative correction in time² or length²)

$$ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} \qquad g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu},$$

• "trace-reversed perturbation" satisfies wave eqn, sourced by energy and momentum

$$\Box \overline{h}_{\mu\nu} = -16\pi T_{\mu\nu}$$

 T_{00} : energy density, $T_{01,02,03}$: momentum density, $T_{11,12,...33}$: stress

analogous to EM: $\Box A_{\mu} = 4\pi J_{\mu}$

• Leading multipole radiation is mass quadrupole (analogous to Electric Quadrupole)

$$h \sim \frac{\ddot{Q}}{d} \sim \frac{ML^2 \Omega^2}{d} \sim \frac{Mv^2}{d}$$

Magnitude is very very small

1 m away from the most powerful H-bombs tested (2×10^{17} J): $h \sim 10^{-27}$

Total mass of $5M_{\odot}$ colliding at v~0.3c, at VIRGO cluster: h ~ 3×10^{-21}

Evidence of Gravitational Waves

- Hulse-Taylor binary pulsar discovered in 1974
- Two 1.4 M_☉ neutron stars orbiting around each other with period 7.75h, one emitting radio pulses
- Energy carried away by GW causing orbital period to shrink
- Current GW frequency (twice orbital freq): 71µHz
- Orbital decay will cause merger in 300M years (GW frequency will reach 10Hz - kHz during merger, the final several minutes)

estimated merger rate 20 - 1000/Myr in Milky Way [e.g., Kalogera et al 2004]

Sources of Gravitational Waves

Ground-Based Detectors

- How do we detect gravitational waves on the earth?
 - Effect of GW in a "small region" (compared with wavelength)
 - Optical Interferometry with short arms
 - Quantum enhancement on the ground
 - Limitations of GW detection on the ground

Plane Gravitational Wave

• Coordinates can be chosen such that a plane wave along z direction can be written as

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu},$$

$$h_{ij}^{\text{TT}}(t, x, y, z) = \begin{bmatrix} h_{+}(t-z) & h_{\times}(t-z) & 0 \\ h_{\times}(t-z) & -h_{+}(t-z) & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad i, j = x, y, z$$

This is called the TT gauge because h is transverse, and traceless.

 $h_{\scriptscriptstyle +, \times}$ are the two polarizations of the plane GW

This coordinate system is convenient in describing wave propagation, but not for describing relative motions of nearby objects

Influence of GW on Light and Matter

... in a region with spatial size much less than GW wavelength we go to the Local Lorenz Frame

• low-velocity objects feel tidal gravity force:

$$M\ddot{x}^{j} = \frac{1}{2}M\ddot{h}_{jk}^{TT}x^{k} + F^{j} \qquad h_{jk}^{TT} = \begin{bmatrix} h_{+} & h_{\times} & 0 \\ h_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

array of free masses will be distorted with strain ~ h

- Light propagation is unaffected by gravitational wave
- Problem reduced to the measurement of a (very weak) classical force field

A Global Network

Laser Interferometer Gravitational-wave Observatory (LIGO)¹⁰

Monday, June 25, 12

Laser Interferometer Gravitational-wave Observatory (LIGO)¹⁰

LIGO Hanford, WA site

LIGO Livingston, LA site

Monday, June 25, 12

Ground-Based Laser Interferometer GW Detector¹¹

Schematic drawing of LIGO Detectors

Sensitivity achieved in first-generation LIGO

achieving 2×10⁻²³/rtHz at ~ 200 Hz

Spectral Density: Noise Power Per Frequency Band $h_{rms} \sim \sqrt{f} \cdot S_h$

Michelson Interferometer: Sensitivity Estimate

• Resolvable phase: ~1/(Number of Photons)^{1/2}

Photon Number: Power×Duration/(Energy of Photon)

assuming

$$\lambda = 1 \mu m$$
 $\delta h = \frac{\lambda}{2\pi L} \sqrt{\frac{\hbar \omega_0}{I_0 \tau}} \Rightarrow \sqrt{\frac{S_h}{I_0 \tau}} = \frac{\lambda}{2\pi L} \sqrt{\frac{\hbar \omega_0}{I_0}} = 7.5 \cdot 10^{-21} \left(\frac{4km}{L}\right) \left(\frac{5W}{I_0}\right)^{1/2} \text{Hz}^{-1/2}$
rms error
"shot noise" spectral density
(noise power/frequency band)
initial LIGO 2×10⁻²³
factor of 300-400 away!

Resonant Enhancement of Sensitivity

Radiation Pressure Noise

without cavity ...

$$\delta P = \delta N \cdot \frac{2\hbar\omega_0}{c} = \sqrt{N} \frac{2\hbar\omega_0}{c} = \sqrt{\frac{I_0\tau}{\hbar\omega_0}} \frac{2\hbar\omega_0}{c}$$

rms momentum of mirror given by photon # fluctuation

$$\delta F = \delta P / \tau = \sqrt{\frac{4\hbar\omega_0 I_0}{c^2\tau}}$$

$$\sqrt{S_h^{\text{rad pres}}} = \frac{1}{m\Omega^2 L} \sqrt{\frac{4\hbar\omega_0 I_0}{c^2}} \frac{2/T}{\sqrt{1 + (\Omega/\gamma)^2}}$$

Standard Quantum Limit

If we place the two types of noise together

$$\sqrt{S_h^{\text{shot}}} = \frac{\lambda}{2\pi L} \sqrt{\frac{\hbar\omega_0}{I_0}} = \frac{1}{L} \sqrt{\frac{\hbar c^2}{I_0\omega_0}} \frac{\sqrt{1 + (\Omega/\gamma)^2}}{2/T}$$
$$\sqrt{S_h^{\text{rad pres}}} = \frac{1}{m\Omega^2 L} \sqrt{\frac{4\hbar I_0\omega_0}{c^2}} \frac{2/T}{\sqrt{1 + (\Omega/\gamma)^2}} = \frac{2\hbar}{m\Omega^2 L} \sqrt{\frac{I_0\omega_0}{\hbar c^2}} \frac{2/T}{\sqrt{1 + (\Omega/\gamma)^2}}$$

Their dependences on power and cavity gain are opposite

Quantum Optical Noise in LIGO-I

Generations of GW Detectors

Where does quantum noise come from?

• Optical field close to ω_0 can ben written in the quadrature representation

 $E(t) = E_1(t) \cos \omega_0 t + E_2(t) \sin \omega_0 t \qquad E_{1,2}(t): \text{ slowly varying}$

• Act as modulations when superimposed with single-frequency carrier at ω_0

phasor diagram

• Optical field close to ω_0 can ben written in the quadrature representation

 $E(t) = E_1(t) \cos \omega_0 t + E_2(t) \sin \omega_0 t \qquad E_{1,2}(t): \text{ slowly varying}$

• Act as modulations when superimposed with single-frequency carrier at ω_0

• Optical field close to ω_0 can ben written in the quadrature representation

 $E(t) = E_1(t) \cos \omega_0 t + E_2(t) \sin \omega_0 t \qquad E_{1,2}(t): \text{ slowly varying}$

• Act as modulations when superimposed with single-frequency carrier at ω_0

• Optical field close to ω_0 can ben written in the **quadrature representation**

 $E(t) = E_1(t) \cos \omega_0 t + E_2(t) \sin \omega_0 t \qquad E_{1,2}(t): \text{ slowly varying}$

• Act as modulations when superimposed with single-frequency carrier at ω_0

• Optical field close to ω_0 can ben written in the **quadrature representation**

 $E(t) = E_1(t) \cos \omega_0 t + E_2(t) \sin \omega_0 t \qquad E_{1,2}(t): \text{ slowly varying}$

• Act as modulations when superimposed with single-frequency carrier at ω_0

• Optical field close to ω_0 can ben written in the **quadrature representation**

 $E(t) = E_1(t) \cos \omega_0 t + E_2(t) \sin \omega_0 t \qquad E_{1,2}(t): \text{ slowly varying}$

• Act as modulations when superimposed with single-frequency carrier at ω_0

• Optical field close to ω_0 can ben written in the **quadrature representation**

 $E(t) = E_1(t) \cos \omega_0 t + E_2(t) \sin \omega_0 t \qquad E_{1,2}(t): \text{ slowly varying}$

• Act as modulations when superimposed with single-frequency carrier at ω_0

• Heisenberg Uncertainty In the Frequency Domain

$$S_{a_1a_1}S_{a_2a_2} - |S_{a_1a_2}|^2 \ge 1$$

Minimum Uncertainty

Gaussian States are:

• Heisenberg Uncertainty In the Frequency Domain

• Heisenberg Uncertainty In the Frequency Domain

 $S_{a_1a_1}S_{a_2a_2} - |S_{a_1a_2}|^2 \ge 1$

Minimum Uncertainty

Gaussian States are:

• Heisenberg Uncertainty In the Frequency Domain

 $S_{a_1a_1}S_{a_2a_2} - |S_{a_1a_2}|^2 \ge 1$

Minimum Uncertainty

Gaussian States are:

 $S_{a_1a_1}S_{a_2a_2} - |S_{a_1a_2}|^2 \ge 1$

• Heisenberg Uncertainty In the Frequency Domain

Minimum Uncertainty Gaussian States are: vacuum state coherent states squeezed vacuua squeezed states coherent state vacuum

 $S_{a_1a_1}S_{a_2a_2} - |S_{a_1a_2}|^2 \ge 1$

• Heisenberg Uncertainty In the Frequency Domain

Minimum Uncertainty Gaussian States are: vacuum state coherent states squeezed vacuua squeezed states coherent state vacuum

• Heisenberg Uncertainty In the Frequency Domain

 $S_{a_1a_1}S_{a_2a_2} - |S_{a_1a_2}|^2 \ge 1$

Minimum Uncertainty

Gaussian States are:

• Heisenberg Uncertainty In the Frequency Domain

 $S_{a_1a_1}S_{a_2a_2} - |S_{a_1a_2}|^2 \ge 1$

Minimum Uncertainty

Gaussian States are:

• Heisenberg Uncertainty In the Frequency Domain

$$S_{a_1a_1}S_{a_2a_2} - |S_{a_1a_2}|^2 \ge 1$$

Minimum Uncertainty

Gaussian States are:

• Heisenberg Uncertainty In the Frequency Domain

$$S_{a_1a_1}S_{a_2a_2} - |S_{a_1a_2}|^2 \ge 1$$

Minimum Uncertainty

Gaussian States are:

Amplitude Noise & Phase Noise

- squeezing phase noise will lower shot noise, but increase radiation-pressure noise (good for first-generation detectors, but doesn't help beating the SQL)
- squeezing a combination of input **amplitude** and **phase** will help, but only narrow band
- squeezing a frequency-dependent combination will help beat the SQL broadband.
- detecting a combination of output amplitude and phase may even completely remove back-action noise

Surpassing the SQL in a Michelson interferometer²³

[Kimble et al., 2001]

Quantum Enhancement of Sensitivity Requires Low Loss!

Generation of Squeezed Vacuum

nonlinear

medium

Nonlinear Optics $H_{I} = \chi E^{3}$ quantize $H = \dots + a_{2\omega_0}^{\dagger} a_{\omega_0 + \Omega} a_{\omega_0 - \Omega} + a_{2\omega_0} a_{\omega_0 + \Omega}^{\dagger} a_{\omega_0 - \Omega}^{\dagger}$ when non-linear medium pumped with $2\omega_0$ and phase-matching condition satisfied $H = \dots + \int \frac{d\Omega}{2\pi} \left[A_{2\omega_0}^* a_{\omega_0 + \Omega} a_{\omega_0 - \Omega} + A_{2\omega_0} a_{\omega_0 + \Omega}^{\dagger} a_{\omega_0 - \Omega}^{\dagger} \right]$ this term becomes effective and generates squeezing T=0 $\begin{array}{c} cavity resonant \\ with both \\ \omega_0 and 2\omega_0 \end{array}$ pumped with squeezed

 $2\omega_0$

vac at ω_0

Squeezing for GW Detectors

[GEO Squeezing result, LIGO Scientific Collaboration, 2011]

n the GW band (sub kHz) [K. McKenzie et al., 2004]

ection Squeezing injection at the Galtech 40 m prototype lab [K. Goda et al., 2008]

- 3.5 dB Squeezing at GEO 600 detector [LSC, 2011; H. Vahlbruch, 2010]
- 2+dB squeezing of LIGO Hanford, achieving best-ever sensitivity to GWs at 200+Hz.

Squeezing Status & Prospects

	initial LIGO	Advanced LIGO	aim of future LIGO
total loss	55-60%	20%	<2%
detected	2+dB	6dB	10-15dB

[slide & numbers from Sheila Dwyer, GW Adv Detector Workshop, 2012]

Low-frequency barrier on the earth?

- Suspension Thermal Noise
 - a pendulum's thermal noise seems a strong limitation
 - other methods are being considered
 - magnetic levitation
 - juggling mirrors?
 - atom interferometers
 - TOBA?

Gravity Gradient Noise

• Seismic motion driving fluctuations in newtonian gravity field

[[]figure from Pitkin et al. 2011]

- Can be suppressed by monitoring ground motion and subtracting the predicted effect.
- For LIGO (between 10 Hz and 20 Hz)
 - 5x suppression required to not affect Advanced LIGO
 - 30x suppression required to not affect 3rd generation designs [J. Driggers, 2012]
- Moving detector underground may suppress level and allow better subtraction.

Space-Based GW Detection

- Space-based GW
 - interferometers with long arms (compared with GW wavelength)
 - Laser Interferometer Space Antenna (LISA)
 - quantum enhancements of a LISA-like mission?
 - Other space missions

Plane Gravitational Wave

• Coordinates can be chosen such that a plane wave along z direction can be written as

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu},$$

$$h_{ij}^{\text{TT}}(t, x, y, z) = \begin{bmatrix} h_{+}(t-z) & h_{\times}(t-z) & 0 \\ h_{\times}(t-z) & -h_{+}(t-z) & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad i, j = x, y, z$$

This is called the TT gauge because h is transverse, and traceless.

 $h_{\scriptscriptstyle +, \times}$ are the two polarizations of the plane GW

Influence of GW on Light and Matter

• Propagation of Light in the "Transverse Traceless" gauge

the scalar
wave equation
$$g^{ab}\nabla_{a}\nabla_{b}\Phi = 0 \Leftrightarrow \partial_{\mu}(\sqrt{-g}g^{\mu\nu}\partial_{\nu}\Phi) = 0$$

 $\Phi = A \exp(ik_{\mu}x^{\mu} + i\delta\phi) = A \exp(-i\omega t + i\mathbf{k} \cdot \mathbf{x} + i\delta\phi)$
flat-space solution plus additional phase due to GW
 $k^{\mu} = (\omega, \mathbf{k}) = \omega(1, \hat{\mathbf{k}})$
 4 -wavevector ang freq 3-wavevector propagation direction
 $\delta \phi$ slowly $\mathbf{k}^{\mu}\partial_{\mu}\delta\phi = \frac{h_{\mu\nu}^{TT}k^{\mu}k^{\nu}}{2}$
additional phase accumulates
along rays as wave propagates
 $\delta \phi(t_{0} + L, \mathbf{x}_{0} + \hat{\mathbf{k}}L) = \frac{\omega}{2c} \int_{0}^{L} \hat{k}^{i}\hat{k}^{j}h_{ij}(t_{0} + \xi, \mathbf{x}_{0} + \hat{\mathbf{k}}\xi)d\xi$

Light propagation is modified by GW

Response of Laser Interferometers: TT Gauge

• For larger separation (~ reduced wavelength): oscillatory nature matters

 $h_p = H_p e^{-i\Omega(t-z)}, p = +, \times$... plane wave with propagation direction **N**

GW along z

+ polarized

same as before this favors **k** orthogonal to **N** (transverse wave) proportional to L

additional phase factor due to propagation effect this favors **k** along **N**

suppression of phase shift from simple Lh

Response of Masses and Building an Interferometer³⁴

- In TT gauge: low-speed motion of test masses not affected by GW!
- But test masses won't stay at fixed locations; they will be moving under noisy forces!
- Simplest interferometer
 - A, B, and C freely fall + noisy motion
 - A sends light to B and C
 - B and C reflect light back to A
 - A compares phase between light from B and light from C.
- This gives signal of $(\delta \phi_1 + \delta \phi_2) (\delta \phi_3 + \delta \phi_4)$
- Plus local displacement noises (driven by force noise) & shot noise

Arm Length?

- What if frequency is f = 10 mHz.
- Reduced wavelength is $\lambda/(2\pi) \sim 5 \times 10^9 \text{m} \sim 5 \times 10^6 \text{km}$
- This is the most optimal arm length to reduce effect of local force noise

to collect most of the light, the mirror diameter has to be > $(\lambda L)^{1/2} \sim 71$ m or, reduce to L < D²/ λ ~ 250 km

Laser Interferometer Space Antenna

 $L = 5 \times 10^{6} \text{km} = 5 \times 10^{9} \text{m}$

Equilateral Triangle, tilted at 60 degrees

LISA's Time-Delay Interferometry (TDI)

- LIGO-like interferometry does not work for LISA, because
 - light is too weak
 - arm lengths are not equal enough
- Armstrong, Estabrook & Tinto's Time-Delay Interferometry
 - light not bounced back by mirrors, but detected
 - interferometry signal synthesized, with length difference accounted for

naive view: test masses compare each other's clock by sending & receiving light pulses

6 links between the 3 spacecraft, each with 1 clock 6 channels - 3 clock noises = 3 noise-free channels

t₂₁(L₁₂)+ t₁₂(2L₁₂): cancels noise of 1 t₂₃(L₂₃)+ t₃₂(2L₂₃): cancels noise of 3 *subtracting the two doesn't cancel clock noise of 2!!* **but we can complete the loop!!**

The Real Time-Delay Interferometry

Tinto, Estabrook & Armstrong (2002)

- Two Lasers & Two Test masses on board each spacecraft
 - 6 additional links
 - 3 additional channels of laser noise
 - 3 additional test-mass degrees of freedom
 - these are arranged to also cancel

LISA Noise Spectrum

39

[LISA Science Requirement Document]

Squeezing?

- Signal mode: very wide Gaussian cut by **B**'s aperture, **flat-top mode**
- Local oscillator at **B** must match this mode (mixing in any other mode will only lose)
- Can we squeeze this mode (or approximately this mode)?
 - let's propagate it backwards ...
 - it's not possible to squeeze this mode, unless we have larger apertures!!

Being limited by Aperture Size & Acceleration Noise, LISA cannot be improved quantum mechanically ...

Beyond LISA: BBO & DECIGO

DECIGO

Summary

- Laser Interferometry can be used to detect gravitational waves.
- Squeezing already improves sensitivity of ground-based interferometry.
- Space-based GW detection goes after low-frequency sources