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In quantum mechanics a Quantum Measurement (QM) is any process 
which allows us to acquire (classical) information on the state of a 
(quantum) system.  

“present condition of a system”

“ability of discriminating among different alternatives”
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QUANTUM SYSTEM  S                    HILBERT SPACE  (say of finite dimension d)

|ψ〉 ∈ H
The physical states of an isolated (closed) 
quantum system S correspond to the 
normalized vectors of the space 

‖|ψ〉‖ ≡
√
〈ψ|ψ〉 = 1

H

a mathematical (abstract) object which provides the most 
precise characterization of the system state: i.e. 

|ψ〉 is

|ψ〉 is not    a physical quantity nor an observable quantity ...

it can be used to predict the 
o u t c o m e s o f a n y 
measurement performed on 
the state

i t c o n t a i n s i n a 
compact form all the 
instructions needed 
for preparing the state

|ψ〉
|ψ〉

STATES
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Example: the QUBIT (                            )dimH = d = 2STATES

|ψ〉 = α|0〉 + β|1〉

〈1|0〉 = 0

|α|2 + |β|2 = 1

Bloch Sphere

superposition

|0〉, |1〉

|0〉 = |↔〉

|1〉 = |"〉

Example: polarized single photon

|0〉 = |g〉

|1〉 = |e〉

Example: two level atom
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= probability that the
system S is in 

· · ·

|ψ1〉

|ψ2〉

|ψn〉

p1

p2

pn

pj
|ψj〉

Statistical mixture (ensemble)

ρ =
n∑

j=1

pj |ψj〉〈ψj |

DENSITY OPERATOR

ρ ! 0

Tr[ρ] = 1

{|ψj〉; pj}

fuzzy instructions ...

STATES
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with IDENTITY if 
and only if the state 
is pure, i.e. ρ = |ψ〉〈ψ|

Tr[ρ2] ! 1(i) All density matrices satisfy the 
condition

SOME PROPERTIES:

(ii) The set          of the density matrices 
is convex. Pure states are extremal 
elements of such set.    

S(H) ∑

j

pjρj ∈ S(H)ρj ∈ S(H) =⇒

p r o b a b i l i t y 
distribution

ENSEMBLE 1 

{|ψj〉; pj}

{|ψ′
j〉; p′

j}

The correspondence between ensembles 
and density matrices in general is NOT 
unique. Different ensembles may be 
associated to a same DM. Each of them 
provides a different UNRAVELLING 
of    . 
A special unravelling is provided by the 
spectral decomposition of the     .

ρ {|j〉;λj}
ρ

ρ ENSEMBLE 2

SPECTRAL 
DECOMPOSITI
ON: it is formed 

by the 
eigenvectors and 

eigenvalues of ρ

STATES
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COMPOSITE SYSTEMS

A B
HAB = HA ⊗HB

tensor product 
space

Given            a state of AB the state of A 
and B are expressed by the reduced density 
matrices (~same role of the marginal 
distributions in statistical mechanics).

ρAB

ρB = TrA[ρAB ] partial trace 
over A

partial trace 
over B

The state        is said to be separable if it 
can be expressed as a convex combination 
of factorizable states

ρAB =
∑

j

pjρA(j)⊗ ρB(j)

The state    is factorizable if it can be 
expressed as a tensor product of states of 
the subsystems

ρAB = ρA ⊗ ρB
ρAB

ρAB

A state        which is NOT separable is said 
to be entangled

ρAB (|00〉+ |11〉)/
√

2

ρA = TrB [ρAB ]

STATES
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PURIFICATION (~inverse of reduction)

|Ψρ〉AB ∈ HA ⊗HB

Given         state of A, a PURIFICATION of 
it, is any PURE state of AB 
such that 

ρA =
∑

j

λj |j〉A〈j|

e.g. given the spectral decomposition of 

ρA = TrB [|Ψρ〉AB〈Ψρ|]

ρA

ρA

|Ψρ〉AB =
∑

j

√
λj |j〉A ⊗ |φj〉B

B〈φj |φj′〉B = δjj′

=⇒

All PURIFICATIONS are connected via ISOMETRY acting on the ANCILLARY system

|Ψ′
ρ〉AB = (IA ⊗ UB)|Ψρ〉AB

A B

STATES
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|ψ〉
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Measurements in QM are probabilistic processes:

we can only assign the (conditional) probabilities 
that a certain outcome will occur when 
performing a given measurement on a given state.

(conditional) probability of 
getting the outcome j when 
performing the measurement 
on the state ρ

p(j|ρ)

ρρ

ρ

ρ

ρ

ρ

ρ ...

j1

j2

j3
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PROJECTIVE (or von Neumann) MEASUREMENTS: (simplest and more 
fundamental form of quantum measurements) 

A Projective Measurement (PM) tries to identify the state      of the system  
among a collection of orthonormal configurations (basis of S):

{|j〉}j=1,··· ,d 〈j|j′〉 = δjj′ .

|ψ〉

BORN RULE

p(j|ψ) = |〈j|ψ〉|2 ,

(for mixed state                          ).p(j|ρ) = 〈j|ρ|j〉

...

|ψ〉

|j = 1〉 |j = 2〉

|j = 3〉|j = d〉

NB:      needs 
not be one of 
the elements of 
the basis.

|ψ〉
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Example: polarized single photon

|1〉 = |"〉

Detector 1

|0〉 = |↔〉

|ψ〉 = α|↔〉+ β|#〉

Detector 2
p(↔ |ψ) = |α|2

p(! |ψ) = |β|2
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PROJECTIVE MEASUREMENTS can be described by assigning a collection of    
(possibly rank one) orthogonal PROJECTORS which partition the Hilbert space 
into mutually exclusive sectors,

Πj = |j〉〈j| p(j|ρ) = 〈j|ρ|j〉 = Tr[Πjρ]






ΠjΠj′ = δjj′ Πj

∑d
j=1 Πj = I

−→

Θ|j〉 = θj |j〉

PROJECTIVE MEASUREMENTS as OBSERVABLES

Θ = Θ† ∈ L(H) −→

(orthonormal) eigenstates

(real) eigenvalues

H

〈Θ〉 = Tr[Θρ] =
∑

j

p(j|ρ) θj expectation value of the observable

RMSE (standard deviation)∆Θ =
√∑

j

p(j|ρ) [θj − 〈Θ〉]2 =
√
〈Θ2〉 − 〈Θ〉2
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UNCERTAINTY RELATIONS

ΩΘ != ΘΩ ∆Ω∆Θ ≥ |〈[Ω,Θ]〉|
2

incompatible observables Robertson inequality
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Beyond PROJECTIVE MEASUREMENTS: Indirect or mediated  measurements

AS

SCENARIO I

Scattering
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Beyond PROJECTIVE MEASUREMENTS: Indirect or mediated  measurements

AS

SCENARIO I

Scattering

A

S
ρ

σ
A

S

ρSA

A

S

ρSA
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SCENARIO II S A A

S
ρ

σ
A

S

ρSA

A

S

ρSA
ρ

Noisy detection
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SCENARIO III

Joint detection

A

S
ρ

σ
A

S

ρSA

A

S

ρSA
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Indirect or mediated  measurementsBeyond PROJECTIVE MEASUREMENTS: 

A

S

ρSA

A

S

ρSA

A

S

ρSA

POVM
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P OV M ( Po s i t i v e O p e r a t o r Va l u e d 
Measurement): it is the most general form of 
quantum measurement. It is described by 
assigning a (normalized) collection of 
POSITIVE OPERATORS, Ej ! 0

n∑

j=1

Ej = I

p(j|ρ) = Tr[Ejρ]

Via Naimark extension ALL POVMs can be 
described as a PM on a larger space

S A

H
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How many different TYPES of measurements do 
exist for a given quantum system S?

INFINITELY MANY in principle [e.g. already projective measurements are uncountable]. 
They form a convex manifold:

Of course ONLY FEW which are useful can be implemented in practice [which one depends 
upon the level of control you have on the system]!
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Applications
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Application 0:  Measuring Expectation Value of an OBSERVABLE

〈Θ〉 = Tr[Θρ] =
∑

j

p(j|ρ) θj

...

ρ

ρ

ρ

ρ

θj1

θj2

θj3

...

data processing
(averaging)

〈Θ〉Θ(est)
N =

1
N

N∑

n=1

θjn






(error goes down as ! 1/
√

N)

Can we improve?

...

ρ

ρ

ρ

ρ

NO
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|ψ〉

Application 1:  State Tomography
(reconstruction of a state)

|ψ〉 ?

IMPOSSIBLE if  WE HAVE A SINGLE COPY OF THE STATE   [NO CLONING                                  ]                                 Wootters, Zurek Nature 299 (1982)
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s.t.

...
...

...

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

{|0〉, |1〉}

{|+〉, |−〉}

{| + i〉, |− i〉}

|±〉 = (|0〉±| 1〉)/
√

2

| ± i〉 = (|0〉± i|1〉)/
√

2
















Example I: qubit tomography

ρ = ρ("r) =
I + "r · "σ

2

!r ∈ "3 |!r| ! 1

r3

r2

r1
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Wigner (quasi) distribution

X-P phase space

Example II: state tomography of a single optical mode 
[i.e. harmonic oscillator]

H = !ω[a†a + 1/2][a, a†] = 1

X =
a + a†√

2

P = i
a− a†√

2

[X,P ] = i

Homodyne detection

ϕ

Xϕ =
eiϕa + e−iϕa†√

2
field “quadrature” 

see D’Ariano, Paris, Sacchi quant-ph/0302028 for a review
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ρ′ = Φ(ρ)

output state

Φρ

input state

Option I: prepare a selected collection of input 
states and do state tomography on the associated 
output [due to the linearity of the problem, we 
need only a finite number of selected inputs].

Option 2 (via Choi-Jamiolkowski isomorphism): create 
an entangled input state and apply the map the to 
one of the two components. Then do state 
tomography on the output. [Here we use ONLY one 
input].

Φ state tomography 
of the joint state

Application 1I:  Process Tomography
(reconstruction of a transformation)

The most general discrete-
time evolution of a quantum 
system is described by 
ass ign ing a l inear map 
(channel)      which connects 
the input state  of the 
s y s t e m t o i t s o u t p u t 
counterpart.

Φ
ρ
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 Application III:  State Discrimination

ρ2

ρ3

...

ρ1

 Find the (optimal) POVM 
which gives the best chance of 
success [e.g. the lowest error 

probability]

Given a finite collection of 
possible states, 

and a single copy of a state     
extracted randomly  from the set 

of possible states, determine 
which one correspond to     . 

ρ1, ρ2, · · · , ρn

ρn

ρ?

ρ?

ρ?

NB:  is one of the selected 
states                     but, a 
priori, we don’t know which 
one.

ρ1, ρ2, · · · , ρn

ρ?

Monday, June 25, 2012



Example I: two-state discrimination

ρ

ρ1 ρ2

PE =
1− ‖ρ1 − ρ2‖1/2

2

TRACE DISTANCE 

(i) symmetric,
(ii) positive semi-definite and nullifies iff the two states coincides,
(iii) satisfies the triangular inequality.  

‖Θ‖1 = Tr[
√

Θ†Θ]

D(ρ1, ρ2) =
1
2
‖ρ1 − ρ2‖1

ρ?
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Example I: two-state discrimination with 
N identical copies of the unknown state

P (N)
E =

1− ‖ρ⊗N
1 − ρ⊗N

2 ‖1/2
2

! exp[−N ξQCB ]

ξQCB = − log
{

min
0≤s≤1

Tr[ρs
1ρ

(1−s)
2

}

Audenaert et al. Phys. Rev. Lett. 98, 160501 (2007)

QUANTUM CHERNOFF BOUND

ρ

ρ1 ρ2

ρ?
ρ?

ρ?

ρ?ρ?

ρ

ρ

ρ

ρ

ρ
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ρ Φ? ρ′ = Φ?(ρ)
ρ

Φ1 Φ2

Φ?

Φ?

- Find optimal input (optimal POVM is known)

- Optimize the problem with realistic resource

- Use side channels + entangled probes

 Application III:  Process Discrimination
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Tan, et al. Phys. Rev. Lett. (2008)Quantum Illumination

PDC 
SOURCE
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xj → ρj

C-Q ENCODING Q-C  DECODING
(measurement)

{Ek}

QUANTUM STATE
PROPAGATION

C L A S S I C A L 
INFO SOURCE

C L A S S I C A L 
OUTPUT

ρj → ρ′
jX Y

HOW MUCH INFO CAN BOB GAIN ON X ?

Φ

classical info
quantum info

 Application IV:  Quantum Communication
Transferring Classical Info over a quantum channel

Φ

Φ

Φ

Φ

Φ

Φ

Φ

Φ

Φ

Φ

Φ

Φ

Φ

Φ

Φ

Φ

SEPARABLE ENCODING ENTANGLED ENCODING

LOCAL 
DETECTION

NON 
LOCAL 

DETECTION

“SHANNON” CAPACITY

use channel capac i ty, i .e . the 
asymptotic optimal transmission rate

R =
log M

N

“HOLEVO” CAPACITY
“HSW” CAPACITY

it saturates 
the Holevo Bound
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The optimal communication strategy can be 
constructed by focusing on Typical Subspaces; the 
associated POVM can then be implemented via 
Projective Measurements

YES

YES

NO

RECEIVED 
MESSAGE

1

2

1
2
3

STOP: 
message is 1

NO

STOP: 
UNABLE

TO DECIDE

NO

YES

NO

3
NO

STOP: 
message is 2

STOP: 
message is 3

STOP: 
UNABLE

TO DECIDE

STOP: 
UNABLE

TO DECIDE

RECEIVED 
MESSAGE

. . 
.

Lloyd, Giovannetti, Maccone  PRL  (2011)
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 Application V:  Quantum Estimation

x=?

Probe

x

it transforms the 
incoming probe 
“encoding” on it

the unknown value x
of the parameter

Black Box

GOAL: determine X

measure

The physical mechanisms 
responsible of the 

encoding is known. The
value of x is however

unknown. 
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X

Classical 
theory

“measurement”

conditional probability of 
getting     given the value 

X
ξp(ξ|X)

1

p(ξ1|X)

ξ

2p(ξ2|X)

p(ξν |X)

ξ

ξν

· · ·
Estimation of X 

after     measurementsν

!ξ ≡ (ξ1, ξ2, · · · , ξν)

Xest(!ξ)

i.i.d. process P (!ξ|X) =
ν∏

j=1

p(ξj |X)

data 

proce
ssing
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Root Mean Square Error (RMSE)

δX ≡
√√√√

∑

!ξ

P ("ξ|X)
[
Xest("ξ)−X

]2
=

√
∆X2 + (X − 〈Xest〉)2

Xest
〈Xest〉 X
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CRAMER-RAO bound    
(for asymptotically unbiased est. strategies)

δX ! 1√
νF (X)

FISHER information

scaling with respect to the number times we repeat 
the measurement

ACHIEVABLE 
FOR LARGE 
ENOUGH      ν

F (X) ≡ 〈
[ ∂

∂X
ln p(ξ|X)

]2
〉

1/
√

ν
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measure

Black Box

ρ

Probe

The physical mechanism which is 
responsible for the process is known. 

What we do NOT know is the value of 
the parameter X.

x

ρ→ ρ(X) = EX(ρ)

ρ(X) ξ
p(ξ|X)

POVM (positive operator 
valued measure) 

Eξ ! 0

p(ξ|X) = Tr [Eξ ρ(X)]

∑

ξ

Eξ = 11
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For each POVM we can write

δX ! 1√
νF0(X)

δXPOV M ! 1√
νFPOV M (X)

F0(X) ≡ max
POV M

FPOV M (X)

Given          , which is the best  estimation of X we 
can get?        

ρ(X)

Therefore the optimal estimation error is 
given by 

where

maximum with respect 
to all  POVMQ-FISHER INFO

Q-CRAMER-RAO
BOUND

Helstrom (1976) 

Monday, June 25, 2012



Generalized “Energy-Time” 
uncertainty relationδX ∆H ! 1

2
√

ν

δX ! 1√
νF0(X)

! 1
2
√

ν∆2H

Braunstein, Caves, Milburn,   Ann Phys. (1996) 

Quantum Ziv-Zakai 
BOUND Tsang Phys. Rev. Lett. (2012) 

Q-CRAMER-RAO
BOUND

Prior info
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Summary
- Basics Definitions 
           Projective Measurements
           Indirect & noisy measurements POVM

- Applications to 
          State and Process Tomography 
          State and Process Discrimination
          Quantum Communication
          Quantum Estimation

 NOT DISCUSSED:
            -measurement in continuous-time
            -waveform detection 
            -quantum back-action
            - WAY theorem 
            -weak measurements
            ....

Monday, June 25, 2012



Extra Slides
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DISTANCES BETWEEN STATES

TRACE DISTANCE 

Given two states of S it is important to 
define a “distance” among them.

D(ρ1, ρ2) =
1
2
Tr|ρ1 − ρ2| |Θ| =

√
Θ†Θ

it is a “real distance” as it is
(i) symmetric,
(ii) positive semi-definite and nullifies iff the two states coincides,
(iii) satisfies the triangular inequality.  

FIDELITY F (ρ1, ρ2) = Tr
[√√

ρ1ρ2
√

ρ1

]

it is NOT a distance, but it has some good properties (~opposite of a distance)
(i) symmetric,
(ii) positive semi-definite and smaller than one 
 (it reaches one iff the two states coincides),
(iii) it can be used to bound D. 

D(ρ1, ρ2) + F (ρ1, ρ2) ! 1 D2(ρ1, ρ2) + F 2(ρ1, ρ2) ! 1
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t h e y c a n a l w a y s b e 
represented as an UNITARY 
interaction with an external 
( p o s s i b l y fi c t i t i o u s ) 
environment. 

The most general time-evolution of a 
quantum system is described by assigning a 
map (channel)      which connects the input 
state     of the system to its output 
counterpart

Φ
ρ ∈ S(H)

ρ′ ∈ S(H)

Such transformations must be LINEAR in the 
larger space of the operator algebra, 
COMPLETELY POSITIVE, and TRACE-
PRESERVING (CPT).

ρ′ = Φ(ρ)

input stateoutput state

environm
ent

system

= TrE

[
U (ρ⊗ σE) U†]
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Example: the QUBIT (                            )dimH = d = 2

|0〉 = |g〉

|1〉 = |e〉

|1〉 = | ↑〉 |0〉 = | ↓〉
|0〉 = |↔〉

|1〉 = |"〉

Example: two level atom Example: spin 1/2 Example: polarized single photon

STATES

|ψ〉 = α|0〉 + β|1〉

〈1|0〉 = 0

|α|2 + |β|2 = 1

Bloch Sphere

superposition

|0〉, |1〉
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