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In quantum mechanics a Quantum Measurement (QM) is any process
which allows us to acquire (classical) information on the state of a

(quantum) system.

“ability of discriminating among different alternatives”

@
“present condition of a system”
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STATES

QUANTUM SYSTEM S <

The physical states of an isolated (closed)
quantum system S correspond to the
normalized vectors of the space 7H

» HILBERT SPACE (say of finite dimension d)

pyeH Il = vidly) =1

w> is not a physical quantity nor an observable quantity ...

¢> is a mathematical (abstract) object which provides the most
precise characterization of the system state: i.e.

it contains in a
compact form all the
instructions needed
for preparing the state

it can be used to predict the
outcomes of any
measurement performed on
the state

Monday, June 25, 2012



STATES|  Example: the QUBIT (dimH = d = 2)

0), 1) (10) =0

superposition

¥) = a|0) + 5[1)

} Bloch Sphere
a* + 8] =1
Example: two level atom Exameple: polarized single photon
@ L=le
Wk il =1
“Ar )
Polarising ;
— 0 =19) .
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STATES

Statistical mixture (ensemble)

fuzzy instructions ...

P = probability that the
system S is in’¢j>

{¥5);p5}
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STATES

SOME PROPERTIES:

The correspondence between ensembles ENSEMBLE |
and density matrices in general is NOT {‘?p > p } SPECTRAL
unique. Different ensembles may be J/ L] \ DECOMPOSITI
associated to a same DM. Each of them o\ ON:it is formed
provides a different UNRAVELLING P <o {|7); A} by the
of . AN, eigenvectors and
A special unravelling is provided by the {‘¢j>7p]} eigenvalues of 0
spectral decomposition of the 0. ENSEMBLE 2
(i) All density matrices satisfy the To| 2] <1 with IDENTITY if
condition rp | x and only if the state

is pure,i.e. p = [1) (1|

(i) The set G(H) of the density matrices
is convex. Pure states are extremal
elements of such set.

0, EG(H) == Y pipj € S(H)
j

]

probability
distribution
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STATES

COMPOSITE SYSTEMS

@A) &

HAB — HA ® HB EE;‘ZZI’ product

Given PAB a state of AB the state of A oA =Trglpap] Hemr
and B are expressed by the reduced density
matrices (~same role of the marginal 0B = Tr 4 PAB ziztiji'\trace

distributions in statistical mechanics).

The state PAB is factorizable if it can be B
expressed as a tensor product of states of PAB = PA D PB

the subsystems

The state PAB is said to be separable if it , ,
can be expressed as a convex combination PAB = ijpA (7) ® pB(J)
of factorizable states J

A state PAB which is NOT separable is said (]00) + [11))/v/2

to be entangled
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STATES

PURIFICATION (~inverse of reduction)

Given A state of A,a PURIFICATION of °

it, is any PURE state of AB |V,)aB € Ha ® HpB
such that

PA = TTBH\ij>AB<\IJpH

e.g. given the spectral decomposition of 0 A

PA :Z)\j 7Y A (] — Uy)aB :Z\/Tj’j>A®|¢j>B

B(®j|¢j ) B = 0j;

All PURIFICATIONS are connected via ISOMETRY acting on the ANCILLARY system
/ _
V,)ap = Ia®@Up)|Vy)an
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Measurements in QM are probabilistic processes:

we can only assign the (conditional) probabilities
that a certain outcome will occur when
performing a given measurement on a given state.

Q -- ->-'— Jo (enelitenel) el o
p(j‘p) getting the outcome j when
performing the measurement

. on the state
@ +>D— i g
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PROJECTIVE (or von Neumann) MEASUREMENTS: (simplest and more
fundamental form of quantum measurements)

A Projective Measurement (PM) tries to identify the state [t) of the system
among a collection of orthonormal configurations (basis of S):

{‘j>}j=1,---,d <]‘]/> = 5]']'/ :

NB: |¢> needs
not be one of
the elements of
the basis.

BORN RULE

(for mixed state p(j|p)

p(jl) = [(i1)°

Jlpli) )
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Exameple: polarized single photon

V) = al<)+ 5|1
\.‘"'.';.:-f.i 2,

o l':..,
- 4,{ "'.n.‘

— X/\ {
W /\, n

beamsplitter ~ /«, y

Polarising /@

Detector 1

Detector 2

p(11¥) = [BI7

p(<|¥)

af*
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PROJECTIVE MEASUREMENTS can be described by assigning a collection of
(possibly rank one) orthogonal PROJECTORS which partition the Hilbert space
into mutually exclusive sectors,

(1L = 050 11
IL = [5)(j]| — ¢ mp | 2Ulp) = {lpls) = Tr[IL;p]

PROJECTIVE MEASUREMENTS as OBSERVABLES

(orthonormal) eigenstates

|

©=0" eL(H) —  Ol) =06l
(real) eigenvalues

(©) =Tr[Op| = ZP(]|P) 0; expectation value of the observable
J

AO — \/Zp(jp) 0; — <@>]2 — \/<@2> — (©)2 RMSE (standard deviation)
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UNCERTAINTY RELATIONS

00 #0600 wp  aone > 2O

incompatible observables Robertson inequality
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Beyond PROJECTIVE MEASUREMENTS: Indirect or mediated measurements

SCENARIO |

Gold Foil

« -Particle
emitter

_/ ’

Detecting Screen Slit
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Beyond PROJECTIVE MEASUREMENTS: Indirect or mediated measurements

SCENARIO |

Gold Foil

« -Particle
emitter

Detecting Screen

Scattering
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SCENARIO I S A

Noisy detection
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SCENARIO Il Difference

photo curremt

-~
Photo dicde

Local Oscillatos _

for optical amplification

Data
acquisition

(“Signal®)
Joint detection
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Beyond PROJECTIVE MEASUREMENTS: Indirect or mediated measurements
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POVM (Positive Operator Valued p(]|,0) - TI‘[Ej,O]
Measurement): it is the most general form of

quantum measurement. |t is described by
assigning a (normalized) collection of
POSITIVE OPERATORS,

Via Naimark extension ALL POVMs can be
described as a PM on a larger space
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How many different TYPES of measurements do
exist for a given quantum system !

INFINITELY MANY in principle [e.g. already projective measurements are uncountable].
They form a convex manifold:

Of course ONLY FEW which are useful can be implemented in practice [which one depends
upon the level of control you have on the system]!
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Applications
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Application 0: Measuring Expectation Value of an OBSERVABLE

(©) = Tx[0p] = > p(ilp) 6;
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Application |: State Tomography
(reconstruction of a state)

IMPOSSIBLE if WE HAVE A SINGLE COPY OF THE STATE [NO CLONING Wootters, Zurek Nature 299 (1982) ]
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Example |: qubit tomography

U0), 1)}

Ut)s =)}

£) = (10) £[1))/Vv2

U+2), | =10);

[ £4) = (|0) £[1))/v2
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Example lI: state tomography of a single optical mode [a/, CLT] — ]_ H p— hw [CLT a —|— 1/2]

[i.e. harmonic oscillator]

Wigner (quasi) distribution

X-P phase space

Difference
photo curremt

-“‘ . 'L \ ‘
Photo dicde |

eigoa + e_iSDCLT Local Oscillatos ;) e
ch B \/§ for optical am plification acquisition
field “quadrature” (70
("Signal®)
see D’Ariano, Paris, Sacchi quant-ph/0302028 for a review Homodyne detection
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Application |l: Process Tomography
(reconstruction of a transformation)

input state

output state

\

0

/

Option [: prepare a selected collection of input
states and do state tomography on the associated
output [due to the linearity of the problem, we
need only a finite number of selected inputs].

Option 2 (via Choi-Jamiolkowski isomorphism): create
an entangled input state and apply the map the to
one of the two components. Then do state
tomography on the output. [Here we use ONLY one
input].

d(p)

The most general discrete-
time evolution of a quantum
system is described by
assigning a linear map
(channel) @ which connects
the input state p of the
system to its output
counterpart.

state tomography
of the joint state

Monday, June 25, 2012



Given a finite collection of
possible states,

P1s P2, 5 Pn
and a single copy of a state P07
axtracted randomly from the set
of possible states, determine
which one correspond to 07.

Application lll: State Discrimination

O
7

Find the (optimal) POVM
which gives the best chance of
success [e.g. the lowest error

probability]

NB: O?is one of the selected

states pP1,pP2,° " ,Pn buta
priori, we don’t know which

one.
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Example I: two-state discrimination

?

1 — — 2
p, — L= llm 2 p2l1/

/ 18]|1 = Tr[VOTe]
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Example I: two-state discrimination with
N identical copies of the unknown state

?

L

Audenaert et al. Phys. Rev. Lett. 98, 160501 (2007)
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Application lll: Process Discrimination

(:Dl (I)Q

- Find optimal input (optimal POVM is known)
- Optimize the problem with realistic resource

- Use side channels + entangled probes

X
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Quantum I”umination Tan, et al. Phys. Rev. Lett. (2008)

PDC
SOURCE

LRy
A )
AR Y
.
AR Y
.
AR Y
AN |
A 23
o\
\‘ “ 0
‘U
) Y coherent. state
‘\ “ Py,
“ 'I % -2 —
5
o
o -4}
) quantum illumination
—
~ -6 —
- k= 0.01
EO 8L Ns=0.01
- Np = 20
_10 2 1 2L 1
5 5.5 6 6.5
log, (M)
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Application IV: Quantum Communication
Transferring Classical Info over a quantum channel

CLASSICAL
INFO SOURCE

o

CLASSICAL
OUTPUT
= = = = c|assical info C'Q ENCODING QUANTUM STATE Q'C DECODING
PROPAGATION (measurement)

— Uantum info

HOW MUCH INFO CAN BOB GAIN ON X ?  use channel capacity, ie. the — p _

asymptotic optimal transmission rate N

“SHANNON" CAPACITY

SEPARABLE ENCODING ENTANGLED ENCODING

LOCAL
DETECTION

“HSW” CAPACITY
L/ it saturates
| the Holevo Bound

NON
LOCAL
DETECTION

O00O0
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The optimal communication strategy can be
constructed by focusing on Typical Subspaces; the
associated POVM can then be implemented via
Projective Measurements

RECEIVED
MESSAGE STOP:;

message is 1
YES -

STOP:
UNABLE
TO DECIDE

NO
STOP:

message is 2
YES -

STOP:
UNABLE
TO DECIDE

NO

stop: £
UNABLE
TO DECIDE

YES -

1
2
RECEIVED 3
MESSAGE
STOP:

message is 3

.
.

Lloyd, Giovannetti, Maccone PRL (2011)
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Application V: Quantum Estimation

Probe Black Box

measure

QN

it transforms the
incoming probe
“encoding” on it
the unknown value x
of the parameter

. Fnd Mirree M,

The physical mechanisms
responsible of the
: encoding is known.The
value of x is however
unknown.

Mirror M, i End Mirroe M

GOAL: determine X
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Classical
theory

conditional probability of

.i.d. process

p(ﬁ\X) getting f given the value
X
gE (517527 S 7€I/)
Xest (f)

Estimation of X
after I/ measurements

| 24

PEX) = [ p(&1%)

j=1
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Root Mean Square Error (RMSE)

0X = |3 PEX) [Xewl(d) - Xr — VAX2 1 (X — (Xou))?
3

\

Monday, June 25, 2012



CRAMER-RAOQO bound

(for asymptotically unbiased est. strategies)

1 ACHIEVABLE
i, e FOR LARGE
ENOUGH U/

vE(X)

0

F(X) = <{8—X lﬂp(f\X)r> FISHER information

1/\/V scaling with respect to the number times we repeat
the measurement
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Black Box
Pro be measure

‘\

POVM (positive operator

p(§|X)

The physical mechanism which is valued measure)
responsible for the process is known.
What we do NOT know is the value of
the parameter X. E E& =1 E§ = 0

p— p(X)=Ex(p)

p(§|X) = Tr [E¢ p(X),
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1

For each POVM we can write OXpovim =
VVFpov (X)

Therefore the optimal estimation error is

given by
Q-CRAMER-RAO

BOUND

Helstrom (1976)
where

Fo(X) = max Fp M X
O( ) POV M oV ( )
Q-FISHER INFO maximum with respect

to all POVM
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X > 1 . 1
VvEFy(X) T 2VUvAZH

5X AH > 1 Generalized “Energy-Time”
==

uncertainty relation
2\/V

Braunstein, Caves, Milburn, Ann Phys. (1996)

Q-CRAMER-RAO Quantum Ziv-Zakai
BOUND > BOUND

Prior info

Tsang Phys. Rev. Lett. (2012)
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Summary

- Basics Definitions
Projective Measurements
Indirect & noisy measurements POVM

- Applications to
State and Process Tomography
State and Process Discrimination
Quantum Communication
Quantum Estimation

NOT DISCUSSED:
-measurement in continuous-time
-waveform detection
-quantum back-action
- WAY theorem
-weak measurements
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Extra Slides
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DISTANCES BETWEEN STATES

Given two states of S it is important to
define a “distance” among them.

1
TRACE DISTANCE D(p1,p2) = §Tr\p1 — po] 0| =vOTe

it is a “real distance” as it is

(i) symmetric,

(ii) positive semi-definite and nullifies iff the two states coincides,
(iii) satisfies the triangular inequality.

FIDELITY F(pi,p2) ="Tr [\/\/ﬂm\/ﬁl}

it is NOT a distance, but it has some good properties (~opposite of a distance)
(i) symmetric,

(ii) positive semi-definite and smaller than one

(it reaches one iff the two states coincides),

(iii) it can be used to bound D.

D(p1, p2) + F(p1,p2) > 1 D*(p1, p2) + F*(p1,p2) < 1
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The most general time-evolution of a Such transformations must be LINEAR in the
quantum system is described by assigning a larger space of the operator algebra,
map (channel) @ which connects the input COMPLETELY POSITIVE, and TRACE-
state p € 6(H) of the system to its output PRESERVING (CPT).

counterpart p' € G(H)

output state input state

\, l

p'=(p)=Trg [U (p®@og) U]

they can always be
represented as an UNITARY
interaction with an external
(possibly fictitious)
environment.
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STATES|  Example: the QUBIT (dimH = d = 2)

Example: two level atom

Example: spin 1/2

Example: polarized single photon

' | 3
oy | } p—
ALy, A ’1> | I>
!
»,.-’”.‘ '

o e
“¥ 1V
AN

Polarising 5
— |O> = |g> beamsplitter ‘O} _ ]<—>>
0
0), 1) (1/0) = 0
superTosition
[¥) = al0) + 6|1)
| Bloch Sphere

af* + 8] =1

Monday, June 25, 2012




