AUTONOMY IN ROBOTICS
FOR OCEANOGRAPHIC

SCIENCE:
SUCCESSES, CHALLENGES
AND OPPORTUNITIES



Objectives

0 Provide an overview of the state of the art through
case studies

0 Provide a definition of autonomy and delineate its
forms as implemented in practice

0 ldentify the character of oceanographic science
guestions that have benefited from autonomy

o What forms of autonomy are pertinent to illuminating
aspects of Carbon Cycle?
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Definitions, Biases

0 Autonomy

Sense,
Log, Perception Decision

Process,

Cluster, Reactive,
Classify, Heuristic,

Map, Optimization,
Predict Multi-objective

Optimization

Deployment, Trajectory, Sampling
Parameters, Communicate,
Intervene

0 Oceanographic Science: PO, BO, CO, Geology
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Automatic vs. Autonomous...
S

o Technical Advances: 0 Autonomy:
o Vehicle Systems and Reliability o Model-driven adaptive sampling
o Dynamics and Control o Model-based feature
o Behaviors and Mission Primitives detection/classification
o Navigation including SLAM o On-line learning
o Path Planning o Semi-supervised learning
o Fault Detection/Tolerance o Deliberative planners
o Multi-Vehicle Formation Control
o Communication/Compression
O Instrumentation
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Literature
5

ISI Web of Knowledge search criteria: 717 papers total since 1990
Topic=AUV OR (autonomous AND
underwater AND vehicle)

Refined by:

Research Domains=(SCIENCE TECHNOLOGY) 291: Survey 196:
AND Research Areas=(OCEANOGRAPHY OR papers, Scientific
ROBOTICS OR GEOLOGY...) biomimetics, | results

vehicle

designs,
etc.

85:
Autonomy

240: Technical
advances
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Autonomous Ocean Science
7

0 Deepwater

_ 0 Plume tracing
Horizon

Animal trackin
0 Hotspot - &

sampling

o Hydrothermal
exploration

3: Co-robotic 0 DEPTHX

o Triggered

0 AOSNs 2: Off-board/ sampling (INLs,
o Glider fleets TRSMEEUEE DWH)

11: On-board 0 Thermocline
autonomy tracking

o Ocean front
tracking
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Case Study 1: IMOS AUV Facility
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ACFR Underwater Survey Pipeline

FOR FIELD ROBOTICS

S. Williams et al., “Monitoring of benthic reference
sites: Using an autonomous underwater vehicle.”

IEEE Robotics and Automation Magazine, 19(1):73— Visually consistent 3D reconstruction
84, 2012.
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Resolving Benthic Change

S. Williams et al., “Monitoring of benthic reference sites: Using an autonomous
underwater vehicle.” IEEE Robotics and Automation Magazine, 19(1):73-84, 2012. s\

D. A. Smale et al., “Regional-scale benthic monitoring for Ecosystem-Based Fisheries
Management (EBFM) using Autonomous Underwater Vehicle (AUV) technology. ICES Journal of

Marine Science, 2012,
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Case Study 1: Conclusions
N

1 Statistical power of data comes from precise re-visitation
and/or high-resolution. Little need for real-time perceptual
autonomy

0 Challenges:

o Data volume demands automated processing into semantic meaning

0 Opportunities:

o Knowledge discovery
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Case Study 2: Geophysical Plume Studies
with AUVs ABE and Sentry

0 Opportunity

o Synopticity, lower cost, reduced
operating constraints

T'C;OBS; eH . 0 (20 A
Vertigal Velocity O Increased scientific yield from
data-driven surveys
§2on (ﬂ o Challenges:
0.5°C M M o |dentifying feature of interest in
l SEm— T,6, OBS, eH, Vertical Velocity sensor data
Bathymetry, Magnetic Field ) )
I g0 O Responding appropriately to
Wi ~_~50m y 5 contact with feature
_il; \__.' e | L — O Data integrity and sensor failure
N —r = . . y
) | A/ Cameraand Strobe s Risk-aversion in expeditionary
e l A = science
e ./' i
— - ; Yoerger, D.R., A.M. Bradley, M. Jakuba, C.R. German, T. Shank, and M.

e 2 - Tivey. 2007. Autonomous and remotely operated vehicle technology
for hydrothermal vent discovery, exploration, and sampling. Oct 7. 2013
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A modest early
success:

On-board autonomy
revisits “best” sites

Guaranteed minimum
data set

Appropriate when
feature signature is
gualitatively known

Yoerger, Dana R., et al. "Techniques for deep sea near
bottom survey using an autonomous underwater vehicle."
The International Journal of Robotics Research 26:1
(2007): 41-54.
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Rapid Event Response: DWH

0 Additional challenges:

o Unknown signature
o Limited development time

0 Modern acoustic communication
_ permits a co-robotic approach
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Subsurface Hydrocarbon Plumes?
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Subsea Assets

Cabled CTD and
Water Sampler

184 SR Mo o W AN

TETHYS Mass Spectrometer
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Real-time Visualization

$. Deepwater Horizon

:(GOOgle
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Plume mapped to 35 km From Site

Vertical casts confirm
existence of deep plume

o1 Circular CTD “Tow-yo” around
site perimeter finds strongest
methane anomalies to
southwest

o Sentry AUV dive 064 maps
plume 15 km downstream
using preplanned mission

= Sentry AUV dive 065 maps
plume further 5 km
downstream before losing
contact on the basis of
acoustically telemetered
methane readings

Deepwater
Horizon

longitude

-88.5 .
-1 Operators acoustically retask
vehicle until contact is

reestablished

o Sentry AUV tracks plume 8

28.7 km further downstream

28.65

. Camilli, Richard, et al. (2010). Tracking hydrocarbon

latitude 28.55 plume transport and biodegradation at Deepwater
Methane Horizon, Science 330(6001 ): 201-204.
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Threshold-Based Detection

Camilli, Richard, et al. (2010). Tracking hydrocarbon
plume transport and biodegradation at Deepwater
Horizon, Science 330(6001 ): 201-204.
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Chemical Sensors Aboard Sentry
B

Measurement Sensor Normalization
Methane (Methyl ion, m/z 15) TETHYS water vapour
Water vapour ion (m/z 17) TETHYS Argon

Coy (m/z 27) TETHYS water vapour
Oxygen (m/z 32) TETHYS Carbon Dioxide
Argon (m/z 40) TETHYS ' éb I water vapour

Cs. (m/z 43) TETHYS water vapour

Carbon Dioxide (m/z 44) TETHYS water vapour

C4. (m/z 57) TETHYS water vapour

benzene (m/z 78) TETHYS water vapour

naphthalene (m/z 128) TETHYS water vapour

Potential Temp. (1) SeaBird Electronics SBE49 CTD background profile (CTD)
Salinity (1) SeaBird Electronics SBE49 CTD background profile (CTD)
Oxygen Concentration AAnderaa Optode None

Optical Backscatter (OBS) Seapoint Turbidity None

Potential Temp. (2) Neil Brown Ocean Sensors, Inc. GCTD  background profile (CTD)
Salinity (2) Neil Brown Ocean Sensors, Inc. GCTD  background pmﬁle (CTD)

o Opportunity: Co-robotic feature detection
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Co-Robotic Adaptive Plume Survey
2

Raw Data Processed Data Model parameters

LS
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Cluster ID
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System Planner
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Methane and OBS, Sentry 064
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VDP Learned from 8 km of Dive
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Jakuba, Michael V., et al. "Toward automatic classification of chemical sensor
data from autonomous underwater vehicles." Intelligent Robots and Systems

Oct 7, 2013

(IROS), 2011 IEEE/RSI International Conference on. IEEE, 2011.



VDP Learned from 8 km of Dive
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Jakuba, Michael V., et al. "Toward automatic classification of

chemical sensor data from autonomous underwater vehicles."
Intelligent Robots and Systems (IROS), 2011 IEEE/RS)J :
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VDP Learned from Complete Dive
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Jakuba, Michael V., et al. "Toward automatic classification of
chemical sensor data from autonomous underwater vehicles."
Intelligent Robots and Systems (IROS), 2011 IEEE/RS)
International Conference on. IEEE, 2011.
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Probability of
membership in
plume clusters
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Jakuba, Michael V., et al. "Toward automatic classification of chemical sensor 3 -20.00
data from autonomous underwater vehicles." Intelligent Robots and Systems
(IROS), 2011 IEEE/RSJ International Conference on. IEEE, 2011.
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Case Study 2: Conclusions

B
0 Autonomy introduces risk into expeditionary
science

0 Co-robotics reduces the need for precise
descriptions of features or training data

o Communication and visualization are critical enablers

o Machine learning methods can yield the
dimensionality reduction necessary to use limited
communications channels effectively
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Case Study 3: Ephemeral/Localized

Oceanographic Features
B

1 Notable Successes using Autonomy:
O Ocean Fronts

o Intermediate Nepheloid Layers/biological hot-spots
(patchy phenomena)

o Challenges:
O Feature description and detection
O Acquiring the “best” samples

o High-level goal specification and flexible mission
planning
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MBARI Gulpers

mbari.org
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Local Threshold Determination

‘2z H
.7 Peak signal value saved : N v

in sliding window.

i

time

>

delays «

Peak detected: triggering backup triggering
“Ready to trigger.”

Zhang, Yanwu, et al. "Autonomous detection and sampling of water types and fronts in a coastal
upwelling system by an autonomous underwater vehicle." Limnology and Oceanography: Methods 10
(2012): 934-951.
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Flexible Mission Execution
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- Rdjan et al., Onboard Adaptive Control of AUVs using Automated Planning
- and Execution. “Th’Sixteenth International Symposium on Unmanned
Untethered Submersible Technology (UUST09), Durham, NH, Aug. 2009.

Northing
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Case Study 3: Conclusions

-
o Ephemeral or localized features require on-board
autonomy
0 Good results require good feature descriptors
o Intuition
o Detailed knowledge
o Training from classified data

0 Triggering/adaptation implies tradeoffs —
frameworks are nascent in the AUV community
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: AOSN
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Curtin, T. B., & Bellingham, J.

Remote Sensing
Data

Databases

G. (2009). Progress toward
autonomous ocean sampling
networks. Deep Sea Research

Data Assimilation

Part II: Topical Studies in
Oceanography, 56(3), 62-67.
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AOSN: Conclusions

o Off-board/Centralized autonomy
0o Computationally intensive GCM-driven sampling
O Greatest benefits derived from placing slow -moving assets
advantageously relative to features of interest
0 On-board and co-robotic autonomy increasingly
valuable and viable

o To allow for higher-level goal specification, reduced
decision-making burden

O To incorporate studies of sub-resolution phenomena in
context

0 Extension to global scales?
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Application Space
37

0 On-board Autonomy:

O Triggered sampling of ephemeral features

O Extremely small spatial scales or fast temporal scales
o Off-board/Centralized Autonomy:

o Computational limitations of mobile platforms

o Multiple scales, many mobile assets, integration with remote
sensing

o Multiple objectives, large, distributed research teams
0 Co-robotics:

o Exploration; evolving mission objectives
o Poorly characterized features of interest

o Rapid response
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Conclusions (and a Question)

o AUVs are routinely delivering new oceanographic
science. The technology is mature.

0 Autonomy is beginning to deliver new
oceanographic science results in certain
applications

o Do the big uncertainties concerning the Carbon
Cycle share the characteristics of these
applications?
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