Planetary seismology: inspirations from recent Earth studies

Barbara Romanowicz Berkeley Seismological Laboratory

Solidity of the inner core UTD124B'-Solid								
					inner core			
		Mean	No. of			Rel.	Inne	r core
1	Mode	period	obser-	s.e.m.	Comp.	error	energy	
		(s)	vations	(s)	period	(%)	Compr.	Shear
	${}_{1}S_{0}$	613.57	11	0.236	614.59	0.17	0.181	0.000
	$_2S_0$	398.54	40	0.084	397.59	-0.24	0.206	0.001
	3S0	305.84	7	0.129	306.00	0.05	0.233	0.003
	$_4S_0$	243.59	12	0.067	243.80	0.09	0.192	0.007
	$_2S_2$	904.23	21	0.487	904.43	0.02	0.001	0.080
	5S2	397.36	11	0.157	397.03	-0.09	0.015	0.102
	6S1	348.41	21	0.046	348.23	-0.05	0.068	0.011
	7S3	281.37	11	0.113	281.59	0.08	0.004	0.022
	${}_{8}S_{1}$	272.10	11	0.144	271.79	0.11	0.115	0.052
	Nine modes—r.m.s.				LITDIAAD	/ Limid		
					inner core 50		5 0.9	м
				Rel		5.00	Rel	
					Comp	error	Comn	error
					period	(%)	period	(%)
\rightarrow Vs_ic=3 517 km/s					607 30	-1.02	-	0.57
7 V3 IC=0.017 KII/3					392 31	-1.52	301 42	-1.81
					301 36	1 48	301.42	_1 31
ziewonski and Gilbert Nature 1971					241.11	-1.03	241 55	-0.84
					914.94	1 17	917.80	1 50
iso Dziewoński, Science, 1971- radial					399.93	0.67	398.20	0.21
odes					347.10	-0.38	347.38	-0.30
					282.77	0.50	283.34	0.70
					271.00	-0.40	270,92	-0.43

r

Waveform Tomography

Different methods to compute synthetics including highly accurate 3D numerical ones
Fast computers: many simulations

Without any quake-like events

• Single broadband station:

– Single component (Z):

- Seismic Noise PSD Spectrum
- Hum from stacking of noise spectra-> free oscillation frequencies -> internal structure

- Three components?

- Two broadband stations:
 - Single component (Z):
 - Noise correlation methodology
- Array (3 or more stations):
 - Noise source location

Seismic Noise Power Density Spectrum

After Nishida et al., GRL, 2002

With two stations...

Stehly et al., 2006

Shapiro and Campillo, 2004

Continuous wavefield monitoring

Parkfield M 4.7

Tajima et al., 2002

Single 3 component versus 2 Z stations?

- Two Z stations !!
 - Noise spectra
 - Hum
 - Noise correlations
 - Robustness/redundancy

More than two stations (regional array)

before

4000

4000

after

Stack Amplitude as a function of time and azimuth, FNET

01/02/2000 Mw 5.7 ∆ = 74.17°

T = 240 s

F-NET: search for maximum stack amplitude

Day 2000.031 time interval: 54,500-55,500 sec

Back-Azimuth/ phase velocity

Period/phase velocity

PREM model

Rhie and Romanowicz, Nature, 2004

Jan. 2000: 6-hour moving averages - stacks at FNET and BDSN

Jan. 2000: 6-hour moving averages - stacks at FNET and BDSN

Days 2000/030.5 to 2000.034

3h running average with 30mn shift

Grid search for source locations, maximizing stack amplitudes at F-NET, BDSN and 10 stations in Europe

Time interval: 6 hours on 2000.031

With at least one large enough "quake" recorded

- Single station
- Two stations
- Regional array (N ≥ 3)
- Global network ($N \ge 3$)

Monterey bay Ocean Bottom Broadband seismic station

Mom<mark>ent tensor</mark> Solution with 5 **BDSN** stations

Moment tensor Solution using Only MOBB

Waveform modelling techniques

Synthetic seismograms on Europa as a function of ice shell thickness

Mw =5.0 normal fault distance 20 deg –depth = 300m

 Δ = 680 km

High versus low attenuation

Observation from orbiter: Moving source analysis

Observation point starts 410 km east of the source at the event origin time and moves North with an apparent surface velocity of 1.4 km/s calculated in the high Q 5 km thick ice shell model

Several stations: lateral heterogeneity

"Degree 2" structure

Dziewonski et al., submitted

Full Waveform Tomography

Long period (30s-400s) 3- component seismic waveforms

• Subdivided into wavepackets and compared in time domain to synthetics (mode asymptotics \rightarrow SEM).

u(x,t) = G(m) → du = A dm
 A= ∂u/∂m contains Fréchet derivatives of G

Vertical Component Fits

