

Vassilis Angelopoulos

The Earth's space environment is buffeted by the dynamic solar wind

The energy released can wreak havoc to satellites and ground systems, and endanger future space tourists

The Economic Real Estate

Location	Commercial	Military	Research	Total
LEO	273	94	70	437
MEO	19	101	12	132
GEO	308	51	8	367
Totals:	600	245	91	936

A	Total Satellite Fleet (ca Dec, 2004)	~ 936
	Total hardware + launch cost	
A	GEO Transponder Capacity	~ 6,800
A	GEO industry annual revenue	\$ 87 billion
A	LEO + MEO satellite annual revenue	\$ 10 billion
Þ	Satellite Industry annual revenue	\$ 225 billion

A large space storm in 1989 caused currents which damaged this transformer and shut off power for six million people for nine hours.

Penetration of solar wind energy

- About 10% of solar wind energy enters magnetosphere due to dayside magnetic reconnection.
- Nightside reconnection jets plasma toward Earth

The solar wind energy circulation is bursty.

Understanding burst physics and interactions is key to understanding space weather.

THEMIS: a constellation pathfinder with focused objectives

Addressed Substorm Onset Science (c. 2007): Probe Alignments and Ground Conjunctions

Simulation: J. Raeder, UNH Visualization: Tom Bridgman,

GSFC/SVS

Mission success relied on high-heritage instruments. Allowed attention to manufacturability for risk reduction

Exploration in the next ten years: Constellation class missions to understand global consequences of local activations

Space Technology 5 (New Millenium)

Proposed 1999, approved 2002, launched 2006, Center: GSFC

- Constellation pathfinder
- 22 kg ea., d~50cm
- 7 new technologies
- Costs escalated due to LV

CubeSats break traditional models, enabling low-risk constellation development

- Flight-validation as part of major program reduces risk.
- 2. Packaging and testing efficiencies into a "science-craft" also necessitate an integrated team recipe for success.
- 3. Evolution in system design with flight-testing allows progressive increase in system robustness.
- 4. Risk posture very strong: no single-point failure.
- 5. Reconfigurability enables very high science return
- 6. Progressive buildup of full constellation in pieces enables a Heliophysics Constellation Observatory:

Ionosphere + Radiation Belts + Magnetosphere + Solar Wind.