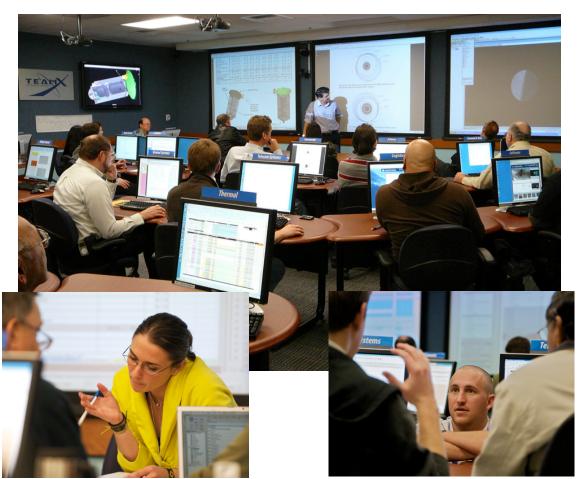
KISS Concurrent Engineering Exercise

Jet Propulsion Laboratory

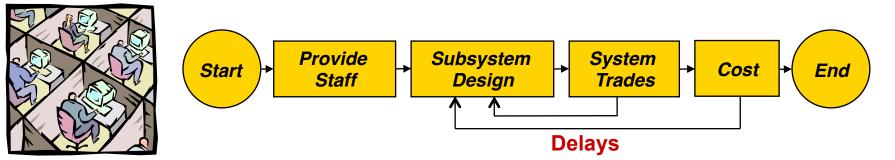
Keith Warfield October 30, 2012

Jet Propulsion Laboratory, California Institute of Technology

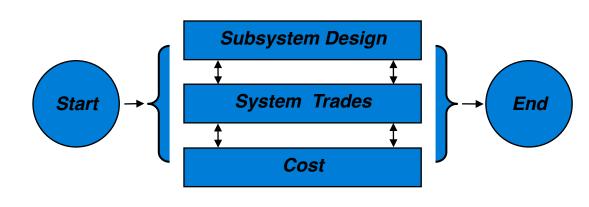
Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.



What is Team X?

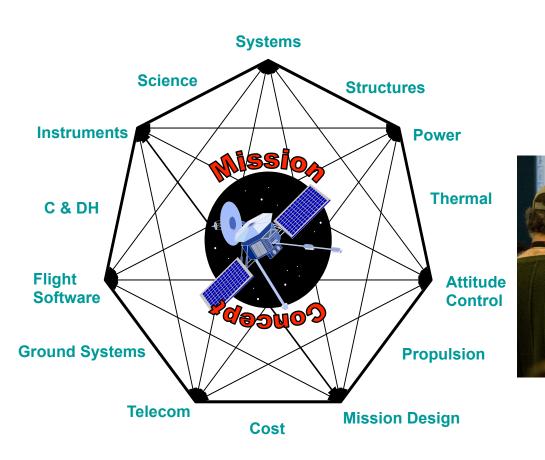

Team X is JPL's concurrent engineering team for rapid design and analysis of space mission concepts

- Developed in 1995 by JPL to reduce study time and cost
- Used for early formulation concept exploration
- Completed over 1100 studies
- Institutionally endorsed
- Emulated by many institutions


Traditional Method – Serial

Concurrent Engineering – Parallel

• Diverse specialists working in real time, in the same place, with shared data, to yield an integrated design



The Mission Team

Plan for Today

🗙 AM – Cubesat

- Team Study Briefing
- Guideline Review
- Review Design Issues
- Subsystem Design Work...Concurrent Design
- Power Estimate Review
- Mass Estimate Review
- Cost Estimate Review
- ▼ PM Relay Satellite
 - Review Design Issues
 - Subsystem Design Work...Concurrent Design
 - Power Estimate Review
 - Mass Estimate Review
 - Cost Estimate Review
- Risk List Review

Cubesat Design Issues

All Subsystems

- Mass, Power and Cost Est.
- Subsystem Risks
- Ops Modes & Scenarios

× ACS

- Inertia
- Torque Calculations
- Wheel and Thruster Sizing, Number and Locations
- Kickoff Stabilization
- Wheel Desaturation

× CDH

- Data Volume/Data Storage
- Bus Interface

Instruments

- Data Volume Calculations
- Orientation/Pointing Req.
- Calibration
- Instrument Operations
- Bus Interface
- Mechanical
 - Deployments
- Mission Design
 - Delta V Budget
 - Cubesat Positions and Orientation

Cubesat Design Issues (Cont'd)

Power

- Battery Sizing
- Solar Array Sizing
- Bus Voltage(s)
- Subsystem Efficiency

Propulsion

- Propellant Load
- Tank Sizing

× Science

- What Spatial Res. Is Req'd?
- Survey or Targeted? Is Tracking Req'd?
- Operations Scenarios
- Data Volume Sizing
- Software
 - Estimate Lines of Code
- × Telecom
 - UHF Link Budget
 - Downlink Data Rate
- × Thermal
 - Internal Operating Temp

Relay Design Issues

All Subsystems

- Mass, Power and Cost Est.
- Subsystem Risks
- Ops Modes & Scenarios

× ACS

- Torque calculations
- Wheel and Thruster Sizing, Number and Location
- Wheel Desaturation

× CDH

- Data Volume/Data Storage
- Bus Interface

- Ground System
 - Downlink Durations
- Payload Dispensers
 - Interfaces
- Mechanical
 - Deployments
 - Mechanisms
 - Packaging
- Mission Design
 - Delta V Budget
 - Launch Vehicle Performance
 - Trajectory

Relay Design Issues (Cont'd)

Power

- Battery Sizing
- Solar Array Sizing
- Bus Voltage(s)
- Power Sys Efficiency
- Propulsion RCS and Primary Systems
 - Prop System Types
 - Propellant Loads
 - Tank Sizing
- × Science
 - Operations Scenarios
- Software
 - Estimate Lines of Code

Telecom

- UHF Multi Link Support
- X-Band Link Budget
- X-Band Downlink Data Rate
- HGA Articulation?
- × Thermal
 - Internal Operating Temp