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DARE MIGHTY THINGS




Recent, On-Orbit + Near-Term JPL Earth
Science Space Missions

OCO-2/3 (Carbon fluxes)

SMAP (Soil moisture)

SWOT (Streamflow)

AIRS (Temperature/water vapor profiles)
MISR (Aerosols, surface BRDF)

MAIA (Aerosols, urban, particulates)

EMIT (Soil minerology, canopy nitrogen, lignin, snow albedo, wind erosion, CH, point sources)
ECOSTRESS (Evapotranspiration)

PREFIRE (Polar energy balance)
NISAR (Forest biomass)

Cloudsat/Calipso (Clouds and aerosols)
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Manage Emissions To Stay Within
and Enhance Uptakes... an Available
= Carbon Budget...

To Limit Climate Change...

Historic Warming
Historic Emissions Remaining Carbon Budget

Accumulated Emissions
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DIVISION S-3—SOIL MICROBIOLOGY
AND BIOCHEMISTRY

Analysis of Factors Controlling Soil Organic Matter Levels in Great Plains Grasslands’
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DAYCENT and its land surface submodel: description and testing
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Global
Biogeochemical Cycles’

Climatic, edaphic, and biotic controls over storage and turnover
of carbon in soils

David S. Schimel, B. H. Braswell, Elisabeth A. Holland, Rebecca McKeown, D. S. Ojima, Thomas H. Painter,
William J. Parton, Alan R. Townsend
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Atmosphere

Vegetation 610
Soils and detritus 1580
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= Mass Balance Net Land Sink {(GCP)

mm= Modeled CO, Effect (TRENDY S1)
wes Atmospheric CO,
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NASA

dC dCa
dt C’a( )

-GPP(t—1) .




Carbon

Cycle
Component
Fossil + Cement
Land Sink
Land-use Change
Ocean Sink
Atmospheric
Growth Rate
Airborne Fraction
(Growth Rate /
Total Emissions)
Imbalance

Flux
1960 1970
(Pg C year')

Flux
2012 2021
(Pg C year!)
9.6 + 0.5
2.7 + 0.5
1.2 + 0.7
29+ 04
5.2+ 0.2

0.48 + 0.9

% Flux
in Northern
Hemisphere

80 (source)
80 (sink)
22 (source)
44 (sink)
N/A

N/A

% Flux
in
Tropics
16 (source)
04 (sink)
72 (source)

03 (source)
N/A

N/A

% Flux
in Southern
Hemisphere

03 (source)
15 (sink)
05 (source)
52 (sink)
N/A

N/A
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Air-sea CO,, Flux (mol C m2 year'1)
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Annual mean NBE (GtCHyr)

Vegetation carbon stocks ii ha" N Jet Propulsion Laboratory
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Eddy
Convariance

In Situ C02
Network

0C0-2
Inversion
Fluxes
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ACCESS-ESM1-5 — IPSL-CM6A-LR
BCC-CSM2-MR — MIROC-ES2L
—— CanESM5 — MPI-ESM1-2-LR
—— CESM2 MRI-ESM2-0
CMCC-CM2-SR5 —— NorESM2-LM
CNRM-ESM2-1 UKESM1-0-LL

— EC-Earth3-Veg B Model ensemble mean
—— GFDL-ESM4

— GISS-E2-1-G - = WISE30sec
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Figure 2. Latitudinal distributions of (a) carbon stocks in cSoil and (b) mean areal carbon density, simulated by CMIP6 ESMs in H H H
the 2000s. Distributions in the global soil datasets HWSD and WISE30sec (1 m soil depth) are included for comparison. Cal |f0rn 1a I nStIt Ute Of TeCh n Ology
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comparison with climatic and rising CO, impacts, but they were notable in several regions. Future

net soil carbon sequestration rates estimated by the ESMs were roughly 0.4%o yr—! (0.6 Pg Cyr™1).

Although there were considerable inter-model differences, the rates are still remarkable in terms of
their potential for mitigation of global warming. The disparate results among ESMs imply that key
parameters that control processes such as SOC residence time need to be better constrained and
that more comprehensive representation of land management impacts on soils remain critical for
understanding the long-term potential of soils to sequester carbon.

Mean cSoil density (kg C m

Latitude (degrees North)

Figure 2. Latitudinal distributions of (a) carbon stocks in cSoil and (b) mean areal carbon density, simulated by CMIP6 ESMs in
the 2000s. Distributions in the global soil datasets HWSD and WISE30sec (1 m soil depth) are included for comparison.
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Atmosphere-land Flux Atmosphere-ocean Flux
— Fully-coupled

— Biogeochemically-coupled
~—— Radiatively-coupled
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— Biogeochemically-coupled
~— Radiatively-coupled

Atmosphere-land Flux (Pg C/year)
Atmosphere-ocean Flux (Pg C/year) ©
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Cumulative Atmosphere-ocean Flux (PgC) Q.
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Atmosphere-land Flux Atmosphere-ocean Flux
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Normalized temperature response

—_— C3 photosynthesis
— C 4 photosynthesis
—— Total ecosystem respiration

Duffy et al 2021

CO, Exchange

= = Photosynthesis

«~== Respiration

linc.'easing CC
(Litter C/N

s | | Feedback)

Increasing CO, 7
(Resource Use /= 7
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This study

Mean = -13.39%

SD = 6.24%

MsTMIP ensemble
Mean = %
SD =4. 79%

-20 ~10
Changes in carbon residence time (%)




Changes in Amazon vegetation resilience since the 1990s and from 2003.
Using time-series correlation of remote observations
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