

A Breakthrough Propulsion Architecture

for Interstellar Precursor Missions

March 5, 2018

John Brophy (PI), James Polk, Leon Alkalai, Nitin Arora, Stacy Weinstein,
Bill Nesmith, Nathan Strange;

Jet Propulsion Laboratory, California Institute of Technology
Philip Lubin; University of California, Santa Barbara

Must Go Faster

3.6 AU/year

- Voyager 1 is the fastest spacecraft in history
- Would take 150 years to get to the solar gravity lens focus at 550 AU

- We want to go 10x faster than Voyager 1, or about 40 AU/year
- How can we do this?

Three Key Features of Our Proposed Architecture to Go Fast

Not a Lot of Propellant

Increase the exhaust velocity, v_{ex} by a factor of 10 over the best ion engines today

LASER

High-power, space-based laser

- Phased array
- Kilometer-scale aperture
- 100's of megawatts

Beam Power Across the Solar System

Popular Mechanics

Humanity's Biggest Machines Will Be Built in Space

By Avery Thompson, Feb 16, 2018

"A mile-wide satellite might sound impossible, but that's exactly where the space industry is headed."

Space-based laser powers a 40,000-s Isp vehicle past Jupiter on a 13-year trip to 550 AU

Artist's concept

Pre-Decisional Mission Concept

110-m diameter Photovoltaic Array Areal density < 200 g/m²

Lithium-fueled ion engines

Array cells tuned to the laser frequency for efficiency > 50%

Array output voltage of 6 kV

Lithium-fueled Ion Thruster

Xenon-fueled

Today's ion engines have 10X the exhaust velocity of the best chemical rockets

Lithium-fueled

Our ion engines will have 10X the exhaust velocity of the best ion thrusters

Specific Impulse > 40,000 s

What Might this Architecture Be Able to Do?

Solar Gravity Lens Mission

Human Missions to Jupiter

Pluto Orbiter Mission

Planetary Defense—Ion Beam Deflection

