Solar Gravity Lens for Exoplanet Imaging: Sail Architectures

Dr. Darren D. Garber Nathan Barnes NXTRAC LGarde

15 May 2018

Overview

- Radiation Pressure
- Sail Trajectory Analysis
- Sail Velocity
- Sail Architectures

Radiation Pressure

Sail Trajectory Analysis

- Objective: investigate performance of simple solar sail trajectories over a 10 year period
 - Determine baseline ("inefficient") performance
 - Simple example for comparison
- Simulation Parameters
 - Solar Sail Area to Mass Ratio: 100 to 1000
 - Reflectivity of 0.9
 - Perihelion: 0.1, 0.15 & 0.2 AU
 - Mission CONOPS:
 - Earth direct to perihelion
 - Jupiter encounter to perihelion
 - Deploy sail at perihelion and align sail with velocity vector
 - No fly-bys or gravity assists
 - No additional propulsion employed

Sail Trajectories to Exit the Solar System

Sail Velocity: Earth Departure

Sail Velocity: Jupiter Encounter

10 years post 0.1 AU Perihelion 500A/m: 125 AU

Challenge of Solar Sails

- Solar sail challenges:
 - Packaging and deployment
 - Control
 - Center of Pressure vs Center of Gravity
 - Constrained & conflicting dynamics
 - Power vs Comm vs Trajectory vs Payload
 - Limited degrees of freedom for active illumination
 - Scalability
 - Materials
 - Non-linearity between mass and area
 - Durability
- Despite significant research largest A/m developed was Sunjammer at 22 m²/kg
 - Vane technology provides key to advancing sail architectures
 - SunDrake & SunVane

Spacecraft	A/m
IKAROS	1.3
Nanosail-D	2.2
Cosmos-1	5.7
LightSail	7.0
Lunar Flashlight/NEA Scout	8.0
Sunjammer	22.3

SunDrake: Vanes Enable Dynamic Missions

Fully Articulated Vanes Allow for Orbital Operations of Propellantless Solar Sail

LEO DEBRIS INSPECTION

DIRECTED ENERGY PROPULSION

SunVane: A New Approach to Sail Architectures

SunVane & SGLF Mission

Next Steps

Design parameters

- Truss mass per length
- Sail material
- Sail area
- Sail geometry

Current Designs

- 100 A/m
 - Truss 100m at 38 g/m
 - 2 micron Kapton
 - Vane area 6 at 200m²
- 200 A/m
 - 1 micron sail
 - Double sail area
- Advanced >500 A/m
 - Vanes transform to disk
 - Sub-micron sail

