

SGL Coronagraph Simulation

Hanying Zhou

Jet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 USA

SGL Coronagraph

- Typical exoplanet coronagraphs:
 - Light contamination from the unresolved, close parent star is the limiting factor:
 - 0.1" Earth sized: ~1e-10; 0.5" Jupiter sized: ~ 1e-9
- In SGL:
 - Light from the parent star focused ~1e3 km away from the imaging telescope
 - The Sun is an extended source (R_o: 1~2 arcsec)
 - The Einstein ring overlaps w/ the solar corona
 - > The Sun light need only to be sufficiently suppressed (to < solar corona level) at the given Einstein's ring location: ~a few e-7, notionally

~ approx. Einstein's ring location

[~] original "coronagraph" in solar astronomy (Sun angular radius size: R₀ ~960 arcsec)

SGL Coronagraph Simulation General Setup

- Classic Lyot coronagraph architecture
 - Occulter mask:remove central part of PSF
 - Lyot stop: further remove residual part at pupil edge
- Amplitude only

- Extended source model
 - The Sun disk: a collection of incoherent off-axis point sources, of uniform brightness
 - Solar corona: $^{1}e-6/r^{3}$ power law radial profile brightness ($r/R_{\odot}>=1$)
- Instrument parameters considered:
 - Telescope diam, SGL distance, occulter mask profile, Lyot mask size
- Fourier based diffraction modeling

SGL Coronagraph Simulation -1

Opaque Disc Hard-edged Occulter

Basic parameter assumptions/ranges:

- Telescope pupil diam = 1~2m
- SGLF distance = 650 ~ 900 AU
- Occulter: radius = inner E-ring radius, 1.09~1.28 R₀
- Lyot stop: diam = 0.5~0.99*pupil_diam
- Solar sampling = $0.05 \sim 0.025 \, R_{\odot} \, (\sim 0.0438 \, arcsec)$
 - → ~5k point sources whose angular coordinates $sqrt(\alpha^2+\beta^2) \le R_{\odot}$
- Monochromatic: $\lambda = 0.6$ um
- Normalized to peak intensity without occulter ("normalized intensity", NI)

0.7

Hard Edge Occulter: A First Look

- Telescope diam = 1m
- SGLF distance = 650 AU
- Occulter radius ~ inner E ring radius
- Lyot stop diam = 0.84* pup diam

Occulter mask: hard-edge radius = E-ring radius

Occulter mask

NI: e-2~e-3 @ E-ring ~1.09R_o

Hard Edge Occulter – Lyot Stop Size

1m telescope + 650 AU SGLF

- High residual Sun light @ Lyot plane (annular peak around pupil diam)
- Reduce Lyot stop size
 lower the peak leakage
 but also widen it

→ Some improvement

Hard Edge Occulter – Telescope Diam

650 AU SGLF + 0.99 pup diam Lyot

1m telescope (left) vs 2m telescope (right)

Significant improvement

Hard Edge Occulter – SGL Distance

2m telescope + 0.5 pupil diam Lyot stop

- Increase SGLF distance → E-ring location farther away from residual peak → effective (but not monotonic) to improve NI
- → SGL ~800au, NI @ E -ring = 4.8e-5

SGL Coronagraph Simulation -2

Opaque Disc Soft-edged Occulter

- Pupil diam = 2, 2.5 m
- SGLF distance = 600 ~ 1000AU
- Source: Sun disc + corona (~1/r^3, up to 2 R₀)
- Solar sampling: 0.025 R_☉ (~ 0.0438 arcsec) → ~5k point sources
- Occulter:
 - Opaque disc radius of ~R_o
 - Soft (Gaussian) edge width: FWHM = 0.5 ~2*(E_ring R₀)
- Lyot stop: diam = 0.5 *pupil diam
- Monochromatic: λ =0.6um
- Normalized to peak intensity without occulter ("normalized intensity", NI)

Occulter mask radial profile

Soft Edged Occulter, First Look

2m telescope, 0.5 pup_diamLyot stop, 800au SGL

Improved NI = 1.75e-5@ E -ring

SGL Dist, Opaque Disc Size

2m telescope, 0.5 pup_diamLyot stop, 800au SGL

• SGLF distance: the larger the better

But decreased benefit once >800au

Opaque disc radius: same as R₀ better
 Unless very large SGL dist (>1000au)

Soft Edge Occulter - Edge Width

NI vs Sun radius, soft edge sizes 10⁻² 2 lamD 4 lamD 10 6 lamD NI @ E ring (~1.20972 Rsun) = 3.3e-08 10 NI @ E ring (~1.20972 Rsun) = 1.1e-06 NI @ E ring (~1.20972 Rsun) = 1.7e-05 10⁻⁵ 10-6 10 10-8 10 1.1 1.3 1.5 1.6 1.7 1.8 1.2 Sun radius (angular)

2m telescope, 0.5 pup_diam Lyot stop, 800au SGL

 Occulter = opaque disc of R_o + Gaussian edge stitched together (various FWHM)

2, 4, 6
$$\lambda$$
/D ~= 0.5, 1, 2*(E-Ring – R_o)

Most effective design parameter so far

Soft Edge Occulter – Parameter Sensitivities

2m telescope, 0.5 pup_diam Lyot stop, 800au SGL, opaque disc of R_0 + 2*(E-ring- R_0) soft edge stitched

Change one parameter at a time w/o optimizing remaining parameters:

- Smaller telescope size (0.5X): huge diff (~100X)
- Larger Lyot mask size (1.5X): large diff (~20X)
- Smaller SGLF dist (0.875X): moderate diff (~5X)

Sun vs Corona at E-ring – 900au

 2m Tel, 900au SGLF, 0.5 pupil Lyot, 1.25*(E-ring- R_o) soft edge, 79% occulter transm (amp) @ E-ring

2.8e-8 Sun vs 3.0 e-8 corona 1.5

• E-ring core PSF thrput*:~9.7%

*Intensity of all pixels w/n $\pm \lambda/D$ of a pnt src at E-ring

NI at E-ring:

Sun vs Corona at E-ring – 2.5m Tel

- 2.5m Tel, 800au SGLF, 0.5 pupil Lyot, 1.2*(Ering- R_☉) soft edge, 81% occulter transm
- Contrast at E-ring:
 2.6e-8 Sun vs 4.5 e-8 corona
- E-ring core PSF thrput: ~ 10%

Summary & Future Work

- A preliminary Lyot coronagraph designed for SGL:
 - 2~2.5m telescope; SGLF distance: 800~900 AU
 - Occulter mask: Opaque disc of radius R₀ + 1.2*(E-ring- R₀) soft edge
 - NI 2.6e-8 Sun light suppression vs 4.5e-8 corona (Better than 2e-7 needed b/c soft edge occulter mask reduces planet light at E-ring also)
 - Core PSF throughput (E-ring): ~ 10%
- On design parameters evaluated:
 - Occulter soft edge profile most effective
 - Telescope size, SGL distance, Lyot stop also help
- Future work in coronagraph design tradeoff

Reduce telescope size and/or SGL distance requirements; more practical mask

- Other mask profiles: Apodized occulter or Lyot stop? phase + amp occulter mask?
- Other architectures: external (starshade, sawtooth)? hybrid external + internal occulter?
- Broadband performance

Backups

Exoplanet Coronagraph Example

Predicted WFISRT-CGI Performance

Predicted WFIRST-CGI performance on a V=5 star, in the context of known planetary systems and current instrumentation (Bailey, V., 2018)

Lyot coronagraph principles

(Sivaramakrishnan et al. 2001)

A Few Definitions

- Fourier based diffraction modeling
 - 1. For each pnt src (a tilted plane wave depend on its location): start from entrance pupil → normalize the field to have intensity of 1 at pupil → FFT to occulter plane and multiply w/ occulter mask → inverse FFT and multiply w/ Lyot mask → one more FFT to the image plane → find intensity
 - 2. Add intensities from all ~5k pnt src.
- On normalization:
 - a) No coronagraph (occulter and Lyot out), image plane intensity of all ~5k pnt src; its peak at center is the normalization factor
 - b) Now w/ coronagraph (occulter and Lyot in), image plane intensity of all ~5k pnt src. Then divided by peak value from a).
- Coronagraph planet core throughput at E-ring
 - Most loss come from Lyot stop mask: ~ 0.42 radius, → 17.64% area
 - Occulter mask (amplitude) also significant: ~80% transmission at E-ring→ intensity 64%
 - "Core" PSF w/o coronagraph (intensity of all pixels w/n $\pm \lambda$ /D of a pnt src at E-ring): ~84%
 - → ~ 0.176*0.64*0.84 = 0.09

Hybrid External + Internal Occulters for Solar Corona

Parameter	Value
Wavelength	$\lambda = 550 \text{nm}$
Angular radius of the Sun	$R_{\odot} = 0.0046542 \text{ rad}$
	= 960 arcsec
Distance to the Sun	∞ (1 AU)
Radius of the external occulter	R = 710 mm
Distance plane O – plane A	$z_0 = 144.348 \text{ m}$
Radius of the pupil	$R_p = 25 \text{ mm}$
Focal length of the telescope	f = 330.385 mm

Fig. 10. Observed intensities as final response in the focal plane, in logarithmic scale. The transverse radius is given in solar units. The intensities are normalized to the mean solar brightness. Black: system S_{\emptyset} given by $I_B(r)$ in plane B. Blue: system S_L given by $I_D(r)$ in plane D. Black: system S_H given by $I_D(r)$ in plane D. Red: system S_H given by $I_D(r)$ in plane D.

• "Performance of the hybrid externally occulted Lyot Solar coronagraph," Rougeot R., et al., Astronomy & Astrophysics, 599, A2 (2017)

F# = $1.5^2/(4*.55 \text{um}*144) = 7102$; **D**_{te}/**D**_{ss} = 0.035; **IWA** = 1.5 m/(2*144)*2.06 e5 = 1073 as

Starshade Scaling

Starshade light suppression performance specified by *(for point src like host star)*:

- Fresnel #: $F#= D_{ss}^2/4\lambda Z$
- Telescope / physical size of the shadow for a given
 F#, so D_{tel} ∞ D_{ss}
- IWA = $D_{ss}/(2Z)*rad2as$

Typical starshade design parameters:

F#=16;
$$D_{tel}/D_{ss}$$
 = 0.08; **IWA** = 77mas D_{tel} = 4m; D_{ss} =50m; Z = 67,000km; λ =0.6um,

For reference, Solar corona (Rougeot R., et al, 2017) **F# =** 1.5^2/(4*.55um*144) = **7102**; **D**_{tel}/**D**_{ss} = 0.035; **IWA** = 1.5m/(2*144)*2.06e5 = 1073 as

(Glassman, T., et al., SPIE, 2009)

For point source

Sun Brightness

2m telescope, 0.5 pup_diam Lyot stop, 800au SGL

Uniform solar brightness (left) vs non-uniform solar brightness* (right)

* Hamme, V., 1993, APJ, 106, 5

Hard Edge Occulter – SGL Distance -2

- 2m telescope + 0.5 pupil diam Lyot stop
- Occulter size proportion to SGL distance
- Larger the SGL distance, lower the peak
 NI, but shifted diffraction pattern
 nullifies most benefit → not effective

NI ~ 4e-4 @ E-ring

