What geomorphologists want from satellite-based
observations about the earth surface and processes:

1) high resolution topography (~1 m cell, <0.1 m vertical).... Everywhere

2) changes with time (yearly and beyond)

3) event based measurements ( flood, landslides,...hazards)

4) auto-detection of features (channels, landslides, trees, shorelines...)

5) high resolution (space and time) rainfall data (km scale in places)

6) detection of properties beneath the surface (soil thickness, fractured
bedrock, soil and rock moisture, ice....)

Satellite-based observations will allow us to detect, quantify and model processes and
connect process with form at spatial and temporal scales impossible by other means.



Why high resolution?

Three emerging areas of promise for satellite observations
Landslide processes
Surface water topography of rivers and inundated floodplains
High spatial resolution rainfall intensity

Autodetection
Channel banks
Landslide scars
Road networks

THE BIG WISH
Mapping the invisible landscape- properties of the critical zone
at spatial resolutions of 10s of centimeters to depths of 10s of
meters.



Conservation of mass equation

surface elevation change = uplift - bedrock erosion- spatial gradient in
sediment transport rate
U =f(?) uplift field (not just vertical component)
4. E =f(?) Geomorphic Transport Laws

Boundary and initial conditions (history)




To solve the mass
conservation equation:

List the distinct
processes that control
TRANSPORT mass flux and seek
theory, field
observations and
experiments to identify
geomorphic transport
laws

FLUVIAL EROSION,
TRANSPORT AND
DEPOSITION




An Example: processes shaping the

Oregon Coast Range

B Colluvium B
accumulation

Unchanneled valley

production
from bedrock

Deep seated landslide
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Understanding landscape change over 10s-100s
of kyr using ALSM data

What controls rates of mass transport across hillslopes?
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Natural Streams and the Legacy of Water-Powered Mills
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Locating and Quantifying Rates of Motion of Active Landslides Using
INSAR and ALSM Data

- Quantifying Rates of Motion of Active Landslides (InSAR + ALSM)
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See Ben MacKey
Figure 1. Shaded relief map
of the central portion of the
Eel River catchment,
northern California. Color
overlays show
large (>1 km), slow-moving
landslides identified using 17
stacked ALOS DInSAR
interferograms collected
from February
2007 to February 2008.
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Figure 1. Colored lines show trajectories of trees growing on earthflow from 1944 to 2006,




Post storm surveys




Post-fire surveys




Mapping water
surface elevation,
water depth, and
estimating
discharge of
rivers

sand transition




Rising stage on Fly without rain on
the floodplain

Fly River high flow prevented from
crossing the floodplain because it
is already flooded due to rain on
the floodplain

Day et al.,
2008, JGR
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Alsdorf et al. 2007, Rev
Geophysics

SRTM C-Band DENI'4 -~ SRTM X-Band DEMM.
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RG2002 Alsdorf et al.: MEASURING SURFACE WATER FROM SPACE Reviews Of

Interferometer Geophysics,
e 2007
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Figure 15. Conceptual view of KaRIN, the Ka Band Radar Interferometer, an interferometric altimeter.
Maximum incidence angle is 4.3; thus the instrument operates very near nadir where water surfaces

River yield strong radar retums. At Ka band the interferometer will penetrate clouds and relies on subtle canopy
openings to penetrate to any underlying water surfaces (openings of only 20% are sufficient). Spatial
bathymetry ? sampling resolutions are noted in Figure 15. Height accuracies will be £50 cm for individual “pixels”;

thus centimetric accuracies are achieved through polynomial averaging methods.



The geomorph community is just
learning how to exploit rainfall
intensity data.

Rain Height

Rainfall intensity from TRMM
data over Texas
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earthobservatory.nasa.gov/IOTD/view.php?id=445
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o Automated rain gage
= Manual rain gage

e Colluvium piezometer
® Bedrock piezometer
% Observation well

+ Tenstometer

A TDR

= Soil lysimeter

& Sprinkler

W Meteorology station
[¥] Upper weir

i Lower weir

Ebel, et al., Am J.
Sci, 2007
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Regolith mass balance in a gneissic watershed, South India
raun et al., 2009,
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Fig. 9. Interpretation of the 12 ERT profiles and corresponding average thickness of the re



Conclusion

o Satellite-based observations have the potential to
transform geomorphology via:

— Full coverage of the earth with high resolution topographic
data, flown at some regular interval

— Event-driven surveys (fire, flood, landslides...)

— Mapping of surface water elevation (and depth) (enables
process studies and discharge calculations)

— Surveys that could quantify the properties of the
subsurface (that could document soil and rock moisture,
groundwater table topography, bedrock fractures, and ice
presence): the invisible (and inaccessible) landscape



Lamb et al., 2008, Science

Formation of Box Canyon Idaho by Megaflood: Implications for Seepage Erosion on Earth and Mars
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