Challenges in earthquake physics and source imaging

Jean-Paul Ampuero and Nadia Lapusta (Caltech Seismolab)

- Main goals and current issues in earthquake dynamics
- The source imaging inverse problem
- Parallels with laboratory experiments
- Interaction of earthquakes and slow slip

San Andreas Fault Most regions are locked **Creeping section Potential transient/deep** creep on the locked segments

Parkfield M_W 6.0 earthquakes (..., 1933, 1966, 2004)

Drilling at Parkfield (SAFOD)

Small repeating earthquakes

Hickman, Zoback, Ellsworth, 2004

Complexity of slip behavior on natural faults

Sunda megathrust in Sumatra:

Parts are fully locked

(Coupling = 1)

Intermediate behavior

Parts slip with the long-term plate rate of 5 cm/yr (Coupling = 0, white)

Chlieh, Avouac, Sieh, Natawidjaja, and Galetzka, 2008

USGS website

Micromechanics of friction

Synthetic data, comparison with field and lab observations, design of experiments

Simulations of fault slip

Model of a vertical strike-slip fault

http://pubs.usgs.gov/publications/text/dynamic.html

We use **boundary integral method** to simulate **spontaneous** slip accumulation on the interface by solving the system

Shear traction on the fault = Friction strength of the fault

(Lapusta and Liu, JGR, 2009)

3D simulations of earthquake cycles: Snapshots of relative slip velocity on the interface

1 billion data points are manipulated at each time step; 100,000 variable time steps.60 processors for this calculation, each with 2GB memory (GPS Beowulf cluster).

(Lapusta and Liu, JGR, 2009)

Interaction of slow slip and earthquakes

We simulate the entire slip history on a fault,

from stable slow sliding of creeping regions, to aseismic processes in the stick-slip regions, to dynamic rupture propagation, and to postseismic slip.

This is the first methodology that combines:

spontaneous fault slip under slow tectonic loading;full inertial (wave-propagation) effects during earthquakes;3D fault model governed by lab-derived friction laws.

Combined with seismic and geodetic observations (SPACE?), these simulations can help determine constitutive properties of faults in terms of lab-derived laws.

Collaboration with Ampuero, Avouac, Chen, Kaneko, Konca, Noda.

Examples of success:

Explanation for scaling and source parameters of small repeating earthquakes. Reproducing (qualitatively) complex behavior of the Sumatra megathrust.

Inversion of a simulated earthquake (Konca, Kaneko, Lapusta, Avouac)

Inversion based on GPS data

Joint inversion 1

Inversion based on seismic data

Joint inversion 2

Model 2: Fits to the data; notice the dense coverage assumed

Fits to coseismic GPS motions

(Konca, Kaneko, Lapusta, Avouac)

Rise times in laboratory earthquakes

Work with Xiao Lu and Ares Rosakis

Experimental setup that mimics crustal earthquakes

(images obtained by Harsha Bhat)

Double Mach front

(images obtained by Harsha Bhat)

Double Mach front

Using particle velocimeters to determine rise times

First experimental observation of pulselike rupture on an interface prestressed in shear α = 20 degrees, P = 10 MPa, velocity measured at 20 mm

Lu, Lapusta, and Rosakis, PNAS, 2007

Non-dimensional shear prestress = $\tau_0 / \sigma_0 = f_0 = \tan \alpha$

Systematic variation from pulses to cracks as shear prestress is increased

Non-dimensional shear prestress = $\tau_0 / \sigma_0 = f_0 = \tan \alpha$ $\alpha = 30^{\circ}, f_{o} = 0.58$ $\alpha = 25^{\circ}, f_{o} = 0.47$ $\alpha = 20^{\circ}, f_{o} = 0.36$ Relative velocity Relative velocity Relative velocity Relative velocity (m/s) Relative velocity (m/s) Relative velocity (m/s) **Crack-like** Wider pulse Narrower pulse 3 3 10µ 20µ 50µ 60µ 20µ 30µ 50µ 6Óµ 30µ 10µ 40µ 40µ 10µ 20µ 30µ 0 50µ 40u 60u Time (s) Time (s) Time (s) 10 mm

Lu, Lapusta, and Rosakis, PNAS, 2007

Challenges in earthquake physics and source imaging Jean-Paul Ampuero and Nadia Lapusta (Caltech Seismolab)

- Main goals and issues in earthquake dynamics
- The source imaging inverse problem
- Parallels with laboratory experiments
- Interaction of earthquakes and slow slip

