Challenges in earthquake physics and source imaging
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 Main goals and current issues in earthquake dynamics
e The source imaging inverse problem

e Parallels with laboratory experiments

* |nteraction of earthquakes and slow slip
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Model of a vertical strike-slip fault
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We use boundary integral method
to simulate spontaneous
slip accumulation on the interface
by solving the system
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3D simulations of earthquake cycles:
Snapshots of relative slip velocity on the interface
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Large earthquake, lasts seconds. Postseismic slip, interface locks.
Time steps < 0.01 s. Large time steps.

60 years later: Aseismic transients, 80 years later: Slow nucleation,
small earthquake. fast next large earthquake.
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1 billion data points are manipulated at each time step; 100,000 variable time steps.
60 processors for this calculation, each with 2GB memory (GPS Beowulf cluster).

(Lapusta and Liu, JGR, 2009)



Interaction of slow slip and earthquakes
We simulate the entire slip history on a fault, 0

from stable slow sliding of creeping regions,
to aseismic processes in the stick-slip regions,
to dynamic rupture propagation,

and to postseismic slip. 5
220 -10 {} 10 20

This is the first methodology that combines:
spontaneous fault slip under slow tectonic loading;

full inertial (wave-propagation) effects during earthquakes;
3D fault model governed by lab-derived friction laws.

Combined with seismic and geodetic observations (SPACE?), these simulations can
help determine constitutive properties of faults in terms of lab-derived laws.

Collaboration with Ampuero, Avouac, Chen, Kaneko, Konca, Noda.

Examples of success:
Explanation for scaling and source parameters of small repeating earthquakes.

Reproducing (qualitatively) complex behavior of the Sumatra megathrust.
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Snapshots of slip rate
Dynamic simulation Joint inversion of seismic and GPS data
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Rise times in laboratory earthquakes

Work with Xiao Lu and Ares Rosakis

M 7.9, 2002 Denali, Alaska Earthquake Laboratory Earthquake




Experimental setup that mimics crustal earthquakes

.
Prestress = — = tan« ; can be adjusted
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From the Laboratory Earthquakes Facility of Ares J. Rosakis, Caltech
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Using particle velocimeters to determine rise times
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From the Laboratory Earthquakes Facility of Ares J. Rosakis, Caltech



Fault-parallel velocity (m/s)

First experimental observation of pulse-
like rupture

on an interface prestressed in shear
o = 20 degrees, P =10 MPa, velocity measured at 20 mm
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Lu, Lapusta, and Rosakis, PNAS, 2007

Non-dimensional shear prestress=7,/o, = f, =tan



Systematic variation from pulses to cracks
as shear prestress is increased

Non-dimensional shear prestress=7,/0, = f, =tan«
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