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INSAR Prehistory
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INSAR Classical Period

Volcano deformation, Galapagos

Ice flow in
Antarctica




Classical InSAR Characteristics

e Exploit dense spatial sampling of cumulative
deformation fields

e Measure static displacements of major events

- Visualize displacements and average velocities
- Solve for slip distributions along faults

- Compute moment magnitudes of earthquakes
- Constrain magma chamber geometries

- Cryospheric, hydrologic, landslide, other uses

 Limitations
- Large displacements (big earthquakes, volcano inflation) only as
atmosphere contributes cm-level errors
- Decorrelation, esp. in vegetated areas

- Temporal data acquisition generally sparse, maybe only 2 or 3 SAR scenes
for any area available



Atmosphere limits

Variation of water vapor in troposphere gives cm-level
arrors throughout image
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Decorrelation limits

e Areal coverage limited to areas with high correlation,
often fails in vegetated regions




Modern era InSAR: We are heading toward time
series analysis

e Current research and future is time series methods

- Persistent scatterers
- Small baseline subset analysis
- Many yet to come

» Enables temporal analysis, observation of new
phenomena, reveals previously unknown or poorly
characterized processes

e Increases sensitivity by minimizing atmosphere and
other phase contaminating terms

e Requires consistent data acquisition



GPS crustal deformation — time dependence
insights
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Aseismic activity — important unappreciated
stress transfer
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NSAR time series: persistent scatterers
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PS selection methods

Permanent scatterers amplitude disp
Ferretti et al., 2000

Pixel phase and filte
Hooper, 2004




PS observations of central San Andreas fault

Fault profile
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INSAR time series: small baseline subset (SBAS)
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SBAS analysis of Long Valley, CA

Temporal evolution of resurgent dome
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SBAS reduction of CSAF region at C-band
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Resolution requirement for more PS points

Prefer PS point density ~100-500 m spatially
Ine resolution helps in two ways

r constant probability of PS, more pixels in
aphic area yield more PS

ution makes it easier for




Phase unwrapping for PS analysis remains a
problem

 Example existing methods
- STUN algorithm from Delft

unwrapping algorithms by Hooper




Edgelist phase unwrapping method
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Enabling future sensors and systems

Frequent, reliable and robust data acquisition
— Longer sequences facilitate PS identification
Multiple measurements reduce atmosphere phase
resolution yields more PS points as smaller scatterers

velengths to improve correlation
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Summary

Time series INSAR invites significant new scientific
vestigations

own phenomena characterized by temporal effects an

plications extended to c




